Spaces:
Sleeping
Sleeping
File size: 1,529 Bytes
4b68381 a8d856c 4b68381 17249dc df022b3 3910b68 df022b3 3910b68 df022b3 3910b68 df022b3 3910b68 df022b3 a268f6c 3910b68 a8d856c df022b3 3910b68 a8d856c 4b68381 a8d856c 4b68381 a8d856c d9738cf a8d856c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
import streamlit as st
import pandas as pd
df = pd.read_csv('last_results.csv')
image1 = 'images/rs_pmpa.PNG'
title_html = """
<style>
@font-face {
font-family: 'Quicksand';
src: url('font/Quicksand-VariableFont_wght.ttf') format('truetype');
}
body {
font-family: 'Quicksand', sans-serif;
}
.custom-title {
color: darkgreen;
font-size: 30px;
font-weight: bold;
}
</style>
<span class='custom-title'>PREVISÕES DE RECEITAS</span>
"""
# Set a fixed width for the sidebar
st.markdown(
"""
<style>
.sidebar .sidebar-content {
width: 300px;
}
</style>
""",
unsafe_allow_html=True
)
with st.sidebar:
st.image(image1, caption='Image 1', use_column_width=True)
st.markdown(title_html, unsafe_allow_html=True)
selected_instituicao = st.selectbox('Select Instituição', df['Instituição'].unique())
selected_conta = st.selectbox('Select Conta', df['Conta'].unique())
# Filter the DataFrame based on selected values
filtered_df = df[(df['Instituição'] == selected_instituicao) & (df['Conta'] == selected_conta)]
# Display the filtered DataFrame
st.write('Filtered DataFrame:')
st.write(filtered_df)
# Display the Forecasts values
if not filtered_df.empty:
forecasts_values = filtered_df['Forecasts'].values
st.write('Forecasts Values:', forecasts_values)
else:
st.warning('No data available for the selected filters.')
|