File size: 1,529 Bytes
4b68381
 
 
a8d856c
4b68381
17249dc
df022b3
3910b68
df022b3
 
 
 
3910b68
df022b3
3910b68
df022b3
 
 
 
 
 
3910b68
df022b3
 
 
a268f6c
 
 
 
 
 
 
 
 
 
 
3910b68
a8d856c
df022b3
3910b68
a8d856c
 
4b68381
a8d856c
 
4b68381
a8d856c
 
 
d9738cf
a8d856c
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import streamlit as st
import pandas as pd

df = pd.read_csv('last_results.csv')

image1 = 'images/rs_pmpa.PNG'

title_html = """
    <style>
        @font-face {
            font-family: 'Quicksand';
            src: url('font/Quicksand-VariableFont_wght.ttf') format('truetype');
        }
        body {
            font-family: 'Quicksand', sans-serif;
        }
        .custom-title {
            color: darkgreen;
            font-size: 30px;
            font-weight: bold;
        }
    </style>
    <span class='custom-title'>PREVISÕES DE RECEITAS</span>
"""

# Set a fixed width for the sidebar
st.markdown(
    """
    <style>
        .sidebar .sidebar-content {
            width: 300px;
        }
    </style>
    """,
    unsafe_allow_html=True
)

with st.sidebar:
    st.image(image1, caption='Image 1', use_column_width=True)
    st.markdown(title_html, unsafe_allow_html=True)
    selected_instituicao = st.selectbox('Select Instituição', df['Instituição'].unique())
    selected_conta = st.selectbox('Select Conta', df['Conta'].unique())

# Filter the DataFrame based on selected values
filtered_df = df[(df['Instituição'] == selected_instituicao) & (df['Conta'] == selected_conta)]

# Display the filtered DataFrame
st.write('Filtered DataFrame:')
st.write(filtered_df)

# Display the Forecasts values
if not filtered_df.empty:
    forecasts_values = filtered_df['Forecasts'].values
    st.write('Forecasts Values:', forecasts_values)
else:
    st.warning('No data available for the selected filters.')