File size: 4,276 Bytes
bbe788d
 
 
897ea2d
bbe788d
 
a580030
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0697975
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbe788d
c9c2156
bbe788d
a580030
 
 
 
 
 
 
bbe788d
643a822
 
 
 
 
 
 
 
d5bb172
643a822
b5290a2
 
 
c9c2156
bbe788d
b5290a2
c9c2156
b5290a2
9c795d0
 
80eb9a3
b5290a2
0f74558
80eb9a3
bbe788d
b5290a2
643a822
bbe788d
b3053e9
 
 
bbe788d
a580030
 
d669f57
a580030
fd31ef9
efca6f0
 
 
 
 
 
 
 
897ea2d
 
 
a580030
897ea2d
 
 
 
 
fd31ef9
 
e949094
 
897ea2d
 
 
7d796d3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import streamlit as st
import pandas as pd
import numpy as np
from sklearn.neighbors import KNeighborsRegressor
from geopy.distance import geodesic

# Function to calculate distance in meters between two coordinates
def calculate_distance(lat1, lon1, lat2, lon2):
    coords_1 = (lat1, lon1)
    coords_2 = (lat2, lon2)
    return geodesic(coords_1, coords_2).meters

# Function to apply KNN and return Vunit values
def knn_predict(df, target_column, features_columns, k=5):
    # Separate features and target variable
    X = df[features_columns]
    y = df[target_column]

    # Create KNN regressor
    knn = KNeighborsRegressor(n_neighbors=k)

    # Fit the model
    knn.fit(X, y)

    # Use the model to predict Vunit for the filtered_data
    predictions = knn.predict(df[features_columns])

    return predictions

# Set wide mode
st.set_page_config(layout="wide")

# Set dark theme
st.markdown(
    """
    <style>
        body {
            color: white;
            background-color: #1e1e1e;
        }
        .st-df-header, .st-df-body, .st-df-caption {
            color: #f8f9fa;  /* Bootstrap table header text color */
        }
        .st-eb {
            background-color: #343a40;  /* Streamlit exception box background color */
        }
    </style>
    """,
    unsafe_allow_html=True
)

# Create a DataFrame with sample data
data = pd.read_excel('ven_ter_fim_PEDÓ.xlsx')

# Initialize variables to avoid NameError
selected_coords = 'Custom'
radius_visible = True
custom_lat = -29.45086
custom_lon = -51.9847
radius_in_meters = 1000
filtered_data = data  # Initialize with the entire dataset

# Find the maximum distance between coordinates
max_distance = 0
for index, row in data.iterrows():
    distance = calculate_distance(row['latitude'], row['longitude'], data['latitude'].mean(), data['longitude'].mean())
    if distance > max_distance:
        max_distance = distance

# Calculate a zoom level based on the maximum distance
zoom_level = round(15 - np.log10(max_distance))

# Create a sidebar for controls
with st.sidebar:
    # Display a title
    st.title('avalia.se')

    # Dropdown to select specific coordinates
    selected_coords = st.selectbox('Selecione Coordenadas', ['Random', 'Custom'])
    if selected_coords == 'Custom':
        custom_lat = st.number_input('Enter Latitude', value=-29.45086)
        custom_lon = st.number_input('Enter Longitude', value=-51.9847)
        radius_visible = True  # Show radius slider for custom coordinates
    else:
        custom_lat, custom_lon = data['latitude'].mean(), data['longitude'].mean()
        radius_visible = False  # Hide radius slider for random coordinates

    # Slider for setting the zoom level
    zoom_level = st.slider('Nível de zoom', min_value=1, max_value=15, value=zoom_level)

    # Conditionally render the radius slider
    if radius_visible:
        radius_in_meters = st.slider('Selecione raio (em metros)', min_value=100, max_value=5000, value=1000)

# Filter data based on the radius
if selected_coords == 'Custom':
    filtered_data = data[data.apply(lambda x: calculate_distance(x['latitude'], x['longitude'], custom_lat, custom_lon), axis=1) <= radius_in_meters]
    filtered_data = filtered_data.dropna()  # Drop rows with NaN values

# Add a custom CSS class to the map container
st.markdown(f"""<style>
.map {{
  width: 100%;
  height: 100vh;
}}
</style>""", unsafe_allow_html=True)

# Check if KNN should be applied
if selected_coords == 'Custom' and radius_visible:
    # Apply KNN and get predicted Vunit values
    predicted_vunit = knn_predict(filtered_data, 'Vunit', ['latitude', 'longitude', 'Area'])  # Update with your features
    # Add predicted Vunit values to filtered_data
    filtered_data['Predicted_Vunit'] = predicted_vunit

# Display the map and filtered_data
with st.container():
    if selected_coords == 'Custom':
        st.map(filtered_data, zoom=zoom_level, use_container_width=True)
    elif selected_coords == 'Random':
        st.map(data, zoom=zoom_level, use_container_width=True)

# Display the predicted Vunit values if applicable
if 'Predicted_Vunit' in filtered_data.columns:
    st.write("Valores (R$/m²) previstos com algoritmo KNN:")
    st.write(filtered_data[['latitude', 'longitude', 'Vunit', 'KNN (R$/m²)']])