Spaces:
Runtime error
Runtime error
File size: 1,920 Bytes
1453fa3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
import gradio as gr
import torch
from transformers import DonutProcessor, VisionEncoderDecoderModel
import re
import json
from huggingface_hub import HfApi
import os
p1=os.environ.get("PATH_MODEL")
p2=os.environ.get("PATH_MODEL_v2")
print(p1,p2)
PATH_MODEL = "fruk19/donut_nfact_v4"
processor = DonutProcessor.from_pretrained(PATH_MODEL)
model = VisionEncoderDecoderModel.from_pretrained(PATH_MODEL)
device = "cuda" if torch.cuda.is_available() else "cpu"
model.eval()
model.to(device)
def predict(test_image):
pixel_values = processor(test_image, return_tensors="pt").pixel_values
pixel_values = pixel_values.to(device)
task_prompt = "<s_nfact>"
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
decoder_input_ids = decoder_input_ids.to(device)
# autoregressively generate sequence
outputs = model.generate(
pixel_values,
decoder_input_ids=decoder_input_ids,
max_length=model.decoder.config.max_position_embeddings,
early_stopping=True,
pad_token_id=processor.tokenizer.pad_token_id,
eos_token_id=processor.tokenizer.eos_token_id,
use_cache=True,
num_beams=1,
bad_words_ids=[[processor.tokenizer.unk_token_id]],
return_dict_in_generate=True,
)
# turn into JSON
seq = processor.batch_decode(outputs.sequences)[0]
seq = seq.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
seq = re.sub(r"<.*?>", "", seq, count=1).strip() # remove first task start token
pred = processor.token2json(seq)
return pred
demo = gr.Interface(fn=predict,
inputs=gr.inputs.Image(type="pil"),
outputs="text",
examples=["image_0.png","image_1.png","image_2.png","image_3.png"],
)
demo.launch() |