File size: 1,156 Bytes
8d91e6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import gradio as gr
import torch
from model import GPT, GPTConfig
import tiktoken

# Load model
device = "cuda" if torch.cuda.is_available() else "cpu"
config = GPTConfig()
model = GPT(config)
model.load_state_dict(torch.load("model.pth", map_location=torch.device(device)))
model.eval()

# Tokenizer
enc = tiktoken.get_encoding("gpt2")

# Function for text generation
def generate_text(prompt, max_length=100):
    tokens = enc.encode(prompt)
    tokens = torch.tensor(tokens, dtype=torch.long).unsqueeze(0).to(device)
    
    with torch.no_grad():
        for _ in range(max_length):
            logits, _ = model(tokens)
            logits = logits[:, -1, :]
            probs = torch.nn.functional.softmax(logits, dim=-1)
            next_token = torch.multinomial(probs, 1)
            tokens = torch.cat([tokens, next_token], dim=1)
    
    return enc.decode(tokens.squeeze().tolist())

# Gradio UI
iface = gr.Interface(
    fn=generate_text,
    inputs=["text", gr.Slider(50, 500, step=10, label="Max Length")],
    outputs="text",
    title="My GPT Model",
    description="Enter a prompt and generate text using my GPT model."
)

iface.launch()