File size: 6,911 Bytes
e9e89e1 25114f9 e9e89e1 3ce0cf6 e9e89e1 9cc847c e9e89e1 9cc847c e9e89e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
import asyncio
import base64
import os
from threading import Event, Thread
import gradio as gr
import numpy as np
import openai
from dotenv import load_dotenv
from gradio_webrtc import (
AdditionalOutputs,
StreamHandler,
WebRTC,
get_twilio_turn_credentials,
)
from openai.types.beta.realtime import ResponseAudioTranscriptDoneEvent
from pydub import AudioSegment
load_dotenv()
SAMPLE_RATE = 24000
def encode_audio(sample_rate, data):
segment = AudioSegment(
data.tobytes(),
frame_rate=sample_rate,
sample_width=data.dtype.itemsize,
channels=1,
)
pcm_audio = (
segment.set_frame_rate(SAMPLE_RATE).set_channels(1).set_sample_width(2).raw_data
)
return base64.b64encode(pcm_audio).decode("utf-8")
class OpenAIHandler(StreamHandler):
def __init__(
self,
expected_layout="mono",
output_sample_rate=SAMPLE_RATE,
output_frame_size=480,
) -> None:
super().__init__(
expected_layout,
output_sample_rate,
output_frame_size,
input_sample_rate=SAMPLE_RATE,
)
self.connection = None
self.all_output_data = None
self.args_set = Event()
self.quit = Event()
self.connected = Event()
self.thread = None
self._generator = None
def copy(self):
return OpenAIHandler(
expected_layout=self.expected_layout,
output_sample_rate=self.output_sample_rate,
output_frame_size=self.output_frame_size,
)
def _initialize_connection(self, api_key: str):
"""Connect to realtime API. Run forever in separate thread to keep connection open."""
self.client = openai.Client(api_key=api_key)
with self.client.beta.realtime.connect(
model="gpt-4o-mini-realtime-preview-2024-12-17"
) as conn:
conn.session.update(session={"turn_detection": {"type": "server_vad"}})
self.connection = conn
self.connected.set()
self.quit.wait()
async def fetch_args(
self,
):
if self.channel:
self.channel.send("tick")
def set_args(self, args):
super().set_args(args)
self.args_set.set()
def receive(self, frame: tuple[int, np.ndarray]) -> None:
if not self.channel:
return
if not self.connection:
asyncio.run_coroutine_threadsafe(self.fetch_args(), self.loop)
self.args_set.wait()
self.thread = Thread(
target=self._initialize_connection, args=(self.latest_args[-1],)
)
self.thread.start()
self.connected.wait()
try:
assert self.connection, "Connection not initialized"
sample_rate, array = frame
array = array.squeeze()
audio_message = encode_audio(sample_rate, array)
self.connection.input_audio_buffer.append(audio=audio_message)
except Exception as e:
# print traceback
print(f"Error in receive: {str(e)}")
import traceback
traceback.print_exc()
def generator(self):
while True:
if not self.connection:
yield None
continue
for event in self.connection:
if event.type == "response.audio_transcript.done":
yield AdditionalOutputs(event)
if event.type == "response.audio.delta":
yield (
self.output_sample_rate,
np.frombuffer(
base64.b64decode(event.delta), dtype=np.int16
).reshape(1, -1),
)
def emit(self) -> tuple[int, np.ndarray] | None:
if not self.connection:
return None
if not self._generator:
self._generator = self.generator()
try:
return next(self._generator)
except StopIteration:
self._generator = self.generator()
return None
def reset_state(self):
"""Reset connection state for new recording session"""
self.connection = None
self.args_set.clear()
self.quit.clear()
self.connected.clear()
self.thread = None
self._generator = None
self.current_session = None
def shutdown(self) -> None:
if self.connection:
self.connection.close()
self.quit.set()
if self.thread:
self.thread.join(timeout=5)
self.reset_state()
def update_chatbot(chatbot: list[dict], response: ResponseAudioTranscriptDoneEvent):
chatbot.append({"role": "assistant", "content": response.transcript})
return chatbot
with gr.Blocks() as demo:
gr.HTML("""
<div style='display: flex; align-items: center; justify-content: center; gap: 20px'>
<div style="background-color: var(--block-background-fill); border-radius: 8px">
<img src="/gradio_api/file=openai-logo.svg" style="width: 100px; height: 100px;">
</div>
<div>
<h1>OpenAI Realtime Voice Chat</h1>
<p>Speak with OpenAI's latest using real-time audio streaming api.</p>
<p>Powered by <a href="https://gradio.app/">Gradio</a> and <a href==https://freddyaboulton.github.io/gradio-webrtc/">WebRTC</a>⚡️</p>
<p>Get an API key from <a href="https://platform.openai.com/">OpenAI</a>.</p>
</div>
</div>
""")
with gr.Row(visible=True) as api_key_row:
api_key = gr.Textbox(
label="OpenAI API Key",
placeholder="Enter your OpenAI API Key",
value=os.getenv("OPENAI_API_KEY", ""),
type="password",
)
with gr.Row(visible=False) as row:
with gr.Column(scale=1):
webrtc = WebRTC(
label="Conversation",
modality="audio",
mode="send-receive",
rtc_configuration=get_twilio_turn_credentials(),
icon="openai-logo.svg",
)
with gr.Column(scale=5):
chatbot = gr.Chatbot(label="Conversation", value=[], type="messages")
webrtc.stream(
OpenAIHandler(),
inputs=[webrtc, api_key],
outputs=[webrtc],
time_limit=90,
concurrency_limit=2,
)
webrtc.on_additional_outputs(
update_chatbot,
inputs=[chatbot],
outputs=[chatbot],
show_progress="hidden",
queue=True,
)
api_key.submit(
lambda: (gr.update(visible=False), gr.update(visible=True)),
None,
[api_key_row, row],
)
if __name__ == "__main__":
demo.launch(allowed_paths=["openai-logo.svg"])
|