File size: 1,646 Bytes
521091c
4a37dab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
521091c
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import gradio as gr
from huggingface_hub import snapshot_download
from threading import Thread
import os
import time
import gradio as gr
import base64
import numpy as np
import requests

from server import serve

repo_id = "gpt-omni/mini-omni"
snapshot_download(repo_id, local_dir="./checkpoint", revision="main")

IP='0.0.0.0'
PORT=60808

thread = Thread(target=serve, daemon=True)
thread.start()

API_URL = "http://0.0.0.0:60808/chat"

OUT_CHUNK = 4096
OUT_RATE = 24000
OUT_CHANNELS = 1

def process_audio(audio):
    filepath = audio
    print(f"filepath: {filepath}")
    if filepath is None:
        return

    cnt = 0
    with open(filepath, "rb") as f:
        data = f.read()
        base64_encoded = str(base64.b64encode(data), encoding="utf-8")
        files = {"audio": base64_encoded}
        tik = time.time()
        with requests.post(API_URL, json=files, stream=True) as response:
            try:
                for chunk in response.iter_content(chunk_size=OUT_CHUNK):
                    if chunk:
                        # Convert chunk to numpy array
                        if cnt == 0:
                            print(f"first chunk time cost: {time.time() - tik:.3f}")
                        cnt += 1
                        audio_data = np.frombuffer(chunk, dtype=np.int16)
                        audio_data = audio_data.reshape(-1, OUT_CHANNELS)
                        yield OUT_RATE, audio_data.astype(np.int16)

            except Exception as e:
                print(f"error: {e}")

def greet(name):
    return "Hello " + name + "!!"

demo = gr.Interface(fn=greet, inputs="text", outputs="text")
demo.launch()