File size: 6,646 Bytes
d58f539
f7de418
d58f539
f7de418
d58f539
f7de418
d6247a0
f7de418
 
d58f539
f7de418
 
f8bd65e
 
a0f34aa
f7de418
ef46ff0
913a139
a0f34aa
ef46ff0
c2d4418
 
 
ef46ff0
 
 
 
 
16020a5
a0f34aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8bd65e
 
 
 
 
 
 
a0f34aa
 
913a139
a0f34aa
f8bd65e
a0f34aa
 
f8bd65e
 
d6247a0
 
 
913a139
 
d6247a0
a0f34aa
d6247a0
 
 
 
 
 
 
 
 
 
913a139
 
d6247a0
 
 
f8bd65e
 
d6247a0
 
f8bd65e
 
 
 
 
 
e65a834
f8bd65e
 
9f81a69
 
f8bd65e
e65a834
9f81a69
d6247a0
f8bd65e
d58f539
f8bd65e
913a139
 
a0f34aa
f8bd65e
 
 
 
 
 
 
 
ef46ff0
e65a834
a0f34aa
e65a834
 
 
 
 
 
 
e490755
 
a0f34aa
 
 
913a139
e65a834
a0f34aa
 
 
 
e65a834
d58f539
a0f34aa
 
 
 
 
 
ef46ff0
 
 
 
 
 
913a139
 
 
f8bd65e
f7de418
ef46ff0
 
 
a0f34aa
ef46ff0
a0f34aa
913a139
 
a0f34aa
f7de418
f8bd65e
 
 
 
9f81a69
a0f34aa
f8bd65e
 
ef46ff0
913a139
f8bd65e
 
 
 
 
913a139
 
d6247a0
a0f34aa
f8bd65e
 
 
 
 
a0f34aa
 
 
 
 
 
 
 
 
 
 
 
 
 
f8bd65e
a0f34aa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import gradio as gr
import numpy as np
import io
from pydub import AudioSegment
import tempfile
import openai
import time
from dataclasses import dataclass, field
from threading import Lock

@dataclass
class AppState:
    stream: np.ndarray | None = None
    sampling_rate: int = 0
    pause_detected: bool = False
    conversation: list = field(default_factory=list)
    client: openai.OpenAI = None
    output_format: str = "mp3"
    stopped: bool = False

# Global lock for thread safety
state_lock = Lock()

def create_client(api_key):
    return openai.OpenAI(
        base_url="https://llama3-1-8b.lepton.run/api/v1/",
        api_key=api_key
    )

def determine_pause(audio, sampling_rate, state):
    # Take the last 1 second of audio
    pause_length = int(sampling_rate * 1)  # 1 second
    if len(audio) < pause_length:
        return False
    last_audio = audio[-pause_length:]
    amplitude = np.abs(last_audio)

    # Calculate the average amplitude in the last 1 second
    avg_amplitude = np.mean(amplitude)
    silence_threshold = 0.01  # Adjust this threshold as needed
    if avg_amplitude < silence_threshold:
        return True
    else:
        return False

def process_audio(audio: tuple, state: AppState):
    if state.stream is None:
        state.stream = audio[1]
        state.sampling_rate = audio[0]
    else:
        state.stream = np.concatenate((state.stream, audio[1]))

    pause_detected = determine_pause(state.stream, state.sampling_rate, state)
    state.pause_detected = pause_detected

    if state.pause_detected:
        return gr.Audio(recording=False), state
    else:
        return None, state

def generate_response_and_audio(audio_bytes: bytes, state: AppState):
    if state.client is None:
        raise gr.Error("Please enter a valid API key first.")

    format_ = state.output_format
    bitrate = 128 if format_ == "mp3" else 32  # Higher bitrate for MP3, lower for OPUS
    audio_data = base64.b64encode(audio_bytes).decode()

    try:
        stream = state.client.chat.completions.create(
            extra_body={
                "require_audio": True,
                "tts_preset_id": "jessica",
                "tts_audio_format": format_,
                "tts_audio_bitrate": bitrate
            },
            model="llama3.1-8b",
            messages=[{"role": "user", "content": [{"type": "audio", "data": audio_data}]}],
            temperature=0.7,
            max_tokens=256,
            stream=True,
        )

        full_response = ""
        audios = []

        for chunk in stream:
            if not chunk.choices:
                continue
            content = chunk.choices[0].delta.content
            audio = getattr(chunk.choices[0], 'audio', [])
            if content:
                full_response += content
                yield full_response, None, state
            if audio:
                audios.extend(audio)

        final_audio = b''.join([base64.b64decode(a) for a in audios])

        yield full_response, final_audio, state

    except Exception as e:
        raise gr.Error(f"Error during audio streaming: {e}")

def response(state: AppState):
    if state.stream is None or len(state.stream) == 0:
        return None, None, state

    audio_buffer = io.BytesIO()
    segment = AudioSegment(
        state.stream.tobytes(),
        frame_rate=state.sampling_rate,
        sample_width=state.stream.dtype.itemsize,
        channels=(1 if len(state.stream.shape) == 1 else state.stream.shape[1]),
    )
    segment.export(audio_buffer, format="wav")

    generator = generate_response_and_audio(audio_buffer.getvalue(), state)

    # Process the generator to get the final results
    final_text = ""
    final_audio = None
    for text, audio, updated_state in generator:
        final_text = text if text else final_text
        final_audio = audio if audio else final_audio
        state = updated_state

    # Update the chatbot with the final conversation
    state.conversation.append({"role": "user", "content": "Audio input"})
    state.conversation.append({"role": "assistant", "content": final_text})

    # Reset the audio stream for the next interaction
    state.stream = None
    state.pause_detected = False

    chatbot_output = state.conversation[-2:]  # Get the last two messages

    return chatbot_output, final_audio, state

def start_recording_user(state: AppState):
    if not state.stopped:
        return gr.Audio(recording=True)
    else:
        return gr.Audio(recording=False)

def set_api_key(api_key, state):
    if not api_key:
        raise gr.Error("Please enter a valid API key.")
    state.client = create_client(api_key)
    return "API key set successfully!", state

def update_format(format, state):
    state.output_format = format
    return state

with gr.Blocks() as demo:
    with gr.Row():
        api_key_input = gr.Textbox(type="password", label="Enter your Lepton API Key")
        set_key_button = gr.Button("Set API Key")

    api_key_status = gr.Textbox(label="API Key Status", interactive=False)

    with gr.Row():
        format_dropdown = gr.Dropdown(choices=["mp3", "opus"], value="mp3", label="Output Audio Format")

    with gr.Row():
        with gr.Column():
            input_audio = gr.Audio(label="Input Audio", sources="microphone", type="numpy")
        with gr.Column():
            chatbot = gr.Chatbot(label="Conversation", type="messages")
            output_audio = gr.Audio(label="Output Audio", autoplay=True)

    state = gr.State(AppState())

    set_key_button.click(set_api_key, inputs=[api_key_input, state], outputs=[api_key_status, state])
    format_dropdown.change(update_format, inputs=[format_dropdown, state], outputs=[state])

    stream = input_audio.stream(
        process_audio,
        [input_audio, state],
        [input_audio, state],
        stream_every=0.25,  # Reduced to make it more responsive
        time_limit=60,  # Increased to allow for longer messages
    )

    respond = input_audio.stop_recording(
        response,
        [state],
        [chatbot, output_audio, state]
    )
    # Update the chatbot with the final conversation
    respond.then(lambda s: s.conversation, [state], [chatbot])

    # Automatically restart recording after the assistant's response
    restart = output_audio.stop(
        start_recording_user,
        [state],
        [input_audio]
    )

    # Add a "Stop Conversation" button
    cancel = gr.Button("Stop Conversation", variant="stop")
    cancel.click(lambda: (AppState(stopped=True), gr.Audio(recording=False)), None,
                [state, input_audio], cancels=[respond, restart])

demo.launch()