File size: 5,416 Bytes
d58f539 2558f9d f7de418 d58f539 f7de418 d6247a0 dec22aa 645d699 ef46ff0 16020a5 7fa63ee f8bd65e 2558f9d 645d699 694882d d6247a0 694882d d6247a0 a0f34aa d6247a0 645d699 d6247a0 694882d 913a139 d6247a0 7fa63ee d6247a0 f8bd65e 7fa63ee 694882d 7fa63ee 694882d 7fa63ee e9633ca 7fa63ee e9633ca 9f81a69 d6247a0 f8bd65e d58f539 2558f9d 645d699 2558f9d f8bd65e 2558f9d f8bd65e ef46ff0 645d699 a0f34aa 694882d 7fa63ee 694882d 7fa63ee 694882d e9633ca 694882d 84a59c3 645d699 84a59c3 f8bd65e a0f34aa 645d699 f8bd65e 84a59c3 645d699 cc76c21 84a59c3 645d699 84a59c3 645d699 a0f34aa 84a59c3 cc76c21 645d699 a0f34aa 645d699 a0f34aa 2d5961d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
import gradio as gr
from gradio_webrtc import WebRTC, ReplyOnPause, AdditionalOutputs
import numpy as np
import io
from pydub import AudioSegment
import openai
import time
import base64
def create_client(api_key):
return openai.OpenAI(
base_url="https://llama3-1-8b.lepton.run/api/v1/",
api_key=api_key
)
def update_or_append_conversation(conversation, id, role, content):
# Find if there's an existing message with the given id
for message in conversation:
if message.get("id") == id and message.get("role") == role:
message["content"] = content
return
# If not found, append a new message
conversation.append({"id": id, "role": role, "content": content})
def generate_response_and_audio(audio_bytes: bytes, lepton_conversation: list[dict],
client: openai.OpenAI, output_format: str):
if client is None:
raise gr.Error("Please enter a valid API key first.")
bitrate = 128 if output_format == "mp3" else 32 # Higher bitrate for MP3, lower for OPUS
audio_data = base64.b64encode(audio_bytes).decode()
try:
stream = client.chat.completions.create(
extra_body={
"require_audio": True,
"tts_preset_id": "jessica",
"tts_audio_format": format_,
"tts_audio_bitrate": bitrate
},
model="llama3.1-8b",
messages=lepton_conversation + [{"role": "user", "content": [{"type": "audio", "data": audio_data}]}],
temperature=0.7,
max_tokens=256,
stream=True,
)
id = str(time.time())
full_response = ""
asr_result = ""
for chunk in stream:
if not chunk.choices:
continue
delta = chunk.choices[0].delta
content = delta.get("content", "")
audio = getattr(chunk.choices[0], "audio", [])
asr_results = getattr(chunk.choices[0], "asr_results", [])
if asr_results:
asr_result += "".join(asr_results)
yield id, None, asr_result, None
if content:
full_response += content
yield id, full_response, None, None
if audio:
# Accumulate audio bytes and yield them
audio_bytes_accumulated = b''.join([base64.b64decode(a) for a in audio])
audio = AudioSegment.from_file(io.BytesIO(audio_bytes_accumulated))
audio_array = np.array(audio.get_array_of_samples(), dtype=np.int16).reshape(1, -1)
print("audio.shape", audio_array.shape)
print("sampling_rate", audio.frame_rate)
yield id, None, None, (audio.frame_rate, audio_array)
yield id, full_response, asr_result, None
except Exception as e:
raise gr.Error(f"Error during audio streaming: {e}")
def response(audio: tuple[int, np.ndarray], lepton_conversation: list[dict],
gradio_conversation: list[dict], client: openai.OpenAI, output_format: str):
audio_buffer = io.BytesIO()
segment = AudioSegment(
audio[1].tobytes(),
frame_rate=audio[0],
sample_width=audio[1].dtype.itemsize,
channels=1,
)
segment.export(audio_buffer, format="wav")
generator = generate_response_and_audio(audio_buffer.getvalue(), lepton_conversation, client, output_format)
for id, text, asr, audio in generator:
if asr:
update_or_append_conversation(lepton_conversation, id, "user", asr)
update_or_append_conversation(gradio_conversation, id, "user", asr)
if text:
update_or_append_conversation(lepton_conversation, id, "assistant", text)
update_or_append_conversation(gradio_conversation, id, "assistant", text)
if audio:
yield audio, AdditionalOutputs(lepton_conversation, gradio_conversation)
else:
yield AdditionalOutputs(lepton_conversation, gradio_conversation)
def set_api_key(api_key):
if not api_key:
raise gr.Error("Please enter a valid API key.")
client = create_client(api_key)
gr.Info("Set API Key Successfully")
return client, gr.skip()
with gr.Blocks() as demo:
with gr.Group():
with gr.Row():
chatbot = gr.Chatbot(label="Conversation", type="messages")
with gr.Row(equal_height=True):
with gr.Column(scale=1):
format_dropdown = gr.Dropdown(choices=["mp3", "opus"], value="mp3", label="Output Audio Format")
api_key_input = gr.Textbox(type="password", label="Enter your Lepton API Key")
set_key_button = gr.Button("Set API Key", variant="primary")
with gr.Column(scale=3):
audio = WebRTC(modality="audio", mode="send-receive",
label="Audio Stream")
client_state = gr.State(None)
lepton_conversation = gr.State([])
set_key_button.click(set_api_key, inputs=[api_key_input], outputs=[client_state, set_key_button])
audio.stream(
ReplyOnPause(response),
inputs=[audio, lepton_conversation, chatbot, client_state, format_dropdown],
outputs=[audio]
)
audio.on_additional_outputs(lambda l, g: (l, g), outputs=[lepton_conversation, chatbot])
demo.launch()
|