File size: 1,137 Bytes
0e21ab4
 
 
 
 
 
 
1d9d941
 
0e21ab4
 
c964d4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
---
title: TreeFormer
emoji: 🚀
colorFrom: purple
colorTo: red
sdk: gradio
sdk_version: 4.32.2
app_file: app.py
pinned: false
license: mit
---

# TreeFormer

This is the code base for IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING (TGRS 2023) paper ['TreeFormer: a Semi-Supervised Transformer-based Framework for Tree Counting from a Single High Resolution Image'](https://arxiv.org/abs/2307.06118)

<img src="sample_imgs/overview.png">

## Installation

Python ≥ 3.7.

To install the required packages, please run:


```bash
  pip install -r requirements.txt
```
    
## Dataset
Download the dataset from [google drive](https://drive.google.com/file/d/1xcjv8967VvvzcDM4aqAi7Corkb11T0i2/view?usp=drive_link).
## Evaluation
Download our trained model on [London](https://drive.google.com/file/d/14uuOF5758sxtM5EgeGcRtSln5lUXAHge/view?usp=sharing) dataset.

Modify the path to the dataset and model for evaluation in 'test.py'.

Run 'test.py'
## Acknowledgements

 - Part of codes are borrowed from [PVT](https://github.com/whai362/PVT) and [DM Count](https://github.com/cvlab-stonybrook/DM-Count). Thanks for their great work!