File size: 18,543 Bytes
b213d84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
# Copyright (c) Facebook, Inc. and its affiliates.
import io
import numpy as np
import os
import re
import tempfile
import unittest
from typing import Callable
import torch
import torch.onnx.symbolic_helper as sym_help
from packaging import version
from torch._C import ListType
from torch.onnx import register_custom_op_symbolic

from detectron2 import model_zoo
from detectron2.config import CfgNode, LazyConfig, instantiate
from detectron2.data import DatasetCatalog
from detectron2.data.detection_utils import read_image
from detectron2.modeling import build_model
from detectron2.structures import Boxes, Instances, ROIMasks
from detectron2.utils.file_io import PathManager


"""
Internal utilities for tests. Don't use except for writing tests.
"""


def get_model_no_weights(config_path):
    """
    Like model_zoo.get, but do not load any weights (even pretrained)
    """
    cfg = model_zoo.get_config(config_path)
    if isinstance(cfg, CfgNode):
        if not torch.cuda.is_available():
            cfg.MODEL.DEVICE = "cpu"
        return build_model(cfg)
    else:
        return instantiate(cfg.model)


def random_boxes(num_boxes, max_coord=100, device="cpu"):
    """
    Create a random Nx4 boxes tensor, with coordinates < max_coord.
    """
    boxes = torch.rand(num_boxes, 4, device=device) * (max_coord * 0.5)
    boxes.clamp_(min=1.0)  # tiny boxes cause numerical instability in box regression
    # Note: the implementation of this function in torchvision is:
    # boxes[:, 2:] += torch.rand(N, 2) * 100
    # but it does not guarantee non-negative widths/heights constraints:
    # boxes[:, 2] >= boxes[:, 0] and boxes[:, 3] >= boxes[:, 1]:
    boxes[:, 2:] += boxes[:, :2]
    return boxes


def get_sample_coco_image(tensor=True):
    """
    Args:
        tensor (bool): if True, returns 3xHxW tensor.
            else, returns a HxWx3 numpy array.

    Returns:
        an image, in BGR color.
    """
    try:
        file_name = DatasetCatalog.get("coco_2017_val_100")[0]["file_name"]
        if not PathManager.exists(file_name):
            raise FileNotFoundError()
    except IOError:
        # for public CI to run
        file_name = PathManager.get_local_path(
            "http://images.cocodataset.org/train2017/000000000009.jpg"
        )
    ret = read_image(file_name, format="BGR")
    if tensor:
        ret = torch.from_numpy(np.ascontiguousarray(ret.transpose(2, 0, 1)))
    return ret


def convert_scripted_instances(instances):
    """
    Convert a scripted Instances object to a regular :class:`Instances` object
    """
    assert hasattr(
        instances, "image_size"
    ), f"Expect an Instances object, but got {type(instances)}!"
    ret = Instances(instances.image_size)
    for name in instances._field_names:
        val = getattr(instances, "_" + name, None)
        if val is not None:
            ret.set(name, val)
    return ret


def assert_instances_allclose(input, other, *, rtol=1e-5, msg="", size_as_tensor=False):
    """
    Args:
        input, other (Instances):
        size_as_tensor: compare image_size of the Instances as tensors (instead of tuples).
             Useful for comparing outputs of tracing.
    """
    if not isinstance(input, Instances):
        input = convert_scripted_instances(input)
    if not isinstance(other, Instances):
        other = convert_scripted_instances(other)

    if not msg:
        msg = "Two Instances are different! "
    else:
        msg = msg.rstrip() + " "

    size_error_msg = msg + f"image_size is {input.image_size} vs. {other.image_size}!"
    if size_as_tensor:
        assert torch.equal(
            torch.tensor(input.image_size), torch.tensor(other.image_size)
        ), size_error_msg
    else:
        assert input.image_size == other.image_size, size_error_msg
    fields = sorted(input.get_fields().keys())
    fields_other = sorted(other.get_fields().keys())
    assert fields == fields_other, msg + f"Fields are {fields} vs {fields_other}!"

    for f in fields:
        val1, val2 = input.get(f), other.get(f)
        if isinstance(val1, (Boxes, ROIMasks)):
            # boxes in the range of O(100) and can have a larger tolerance
            assert torch.allclose(val1.tensor, val2.tensor, atol=100 * rtol), (
                msg + f"Field {f} differs too much!"
            )
        elif isinstance(val1, torch.Tensor):
            if val1.dtype.is_floating_point:
                mag = torch.abs(val1).max().cpu().item()
                assert torch.allclose(val1, val2, atol=mag * rtol), (
                    msg + f"Field {f} differs too much!"
                )
            else:
                assert torch.equal(val1, val2), msg + f"Field {f} is different!"
        else:
            raise ValueError(f"Don't know how to compare type {type(val1)}")


def reload_script_model(module):
    """
    Save a jit module and load it back.
    Similar to the `getExportImportCopy` function in torch/testing/
    """
    buffer = io.BytesIO()
    torch.jit.save(module, buffer)
    buffer.seek(0)
    return torch.jit.load(buffer)


def reload_lazy_config(cfg):
    """
    Save an object by LazyConfig.save and load it back.
    This is used to test that a config still works the same after
    serialization/deserialization.
    """
    with tempfile.TemporaryDirectory(prefix="detectron2") as d:
        fname = os.path.join(d, "d2_cfg_test.yaml")
        LazyConfig.save(cfg, fname)
        return LazyConfig.load(fname)


def min_torch_version(min_version: str) -> bool:
    """
    Returns True when torch's  version is at least `min_version`.
    """
    try:
        import torch
    except ImportError:
        return False

    installed_version = version.parse(torch.__version__.split("+")[0])
    min_version = version.parse(min_version)
    return installed_version >= min_version


def has_dynamic_axes(onnx_model):
    """
    Return True when all ONNX input/output have only dynamic axes for all ranks
    """
    return all(
        not dim.dim_param.isnumeric()
        for inp in onnx_model.graph.input
        for dim in inp.type.tensor_type.shape.dim
    ) and all(
        not dim.dim_param.isnumeric()
        for out in onnx_model.graph.output
        for dim in out.type.tensor_type.shape.dim
    )


def register_custom_op_onnx_export(
    opname: str, symbolic_fn: Callable, opset_version: int, min_version: str
) -> None:
    """
    Register `symbolic_fn` as PyTorch's symbolic `opname`-`opset_version` for ONNX export.
    The registration is performed only when current PyTorch's version is < `min_version.`
    IMPORTANT: symbolic must be manually unregistered after the caller function returns
    """
    if min_torch_version(min_version):
        return
    register_custom_op_symbolic(opname, symbolic_fn, opset_version)
    print(f"_register_custom_op_onnx_export({opname}, {opset_version}) succeeded.")


def unregister_custom_op_onnx_export(opname: str, opset_version: int, min_version: str) -> None:
    """
    Unregister PyTorch's symbolic `opname`-`opset_version` for ONNX export.
    The un-registration is performed only when PyTorch's version is < `min_version`
    IMPORTANT: The symbolic must have been manually registered by the caller, otherwise
               the incorrect symbolic may be unregistered instead.
    """

    # TODO: _unregister_custom_op_symbolic is introduced PyTorch>=1.10
    #       Remove after PyTorch 1.10+ is used by ALL detectron2's CI
    try:
        from torch.onnx import unregister_custom_op_symbolic as _unregister_custom_op_symbolic
    except ImportError:

        def _unregister_custom_op_symbolic(symbolic_name, opset_version):
            import torch.onnx.symbolic_registry as sym_registry
            from torch.onnx.symbolic_helper import _onnx_main_opset, _onnx_stable_opsets

            def _get_ns_op_name_from_custom_op(symbolic_name):
                try:
                    from torch.onnx.utils import get_ns_op_name_from_custom_op

                    ns, op_name = get_ns_op_name_from_custom_op(symbolic_name)
                except ImportError as import_error:
                    if not bool(
                        re.match(r"^[a-zA-Z0-9-_]*::[a-zA-Z-_]+[a-zA-Z0-9-_]*$", symbolic_name)
                    ):
                        raise ValueError(
                            f"Invalid symbolic name {symbolic_name}. Must be `domain::name`"
                        ) from import_error

                    ns, op_name = symbolic_name.split("::")
                    if ns == "onnx":
                        raise ValueError(f"{ns} domain cannot be modified.") from import_error

                    if ns == "aten":
                        ns = ""

                return ns, op_name

            def _unregister_op(opname: str, domain: str, version: int):
                try:
                    sym_registry.unregister_op(op_name, ns, ver)
                except AttributeError as attribute_error:
                    if sym_registry.is_registered_op(opname, domain, version):
                        del sym_registry._registry[(domain, version)][opname]
                        if not sym_registry._registry[(domain, version)]:
                            del sym_registry._registry[(domain, version)]
                    else:
                        raise RuntimeError(
                            f"The opname {opname} is not registered."
                        ) from attribute_error

            ns, op_name = _get_ns_op_name_from_custom_op(symbolic_name)
            for ver in _onnx_stable_opsets + [_onnx_main_opset]:
                if ver >= opset_version:
                    _unregister_op(op_name, ns, ver)

    if min_torch_version(min_version):
        return
    _unregister_custom_op_symbolic(opname, opset_version)
    print(f"_unregister_custom_op_onnx_export({opname}, {opset_version}) succeeded.")


skipIfOnCPUCI = unittest.skipIf(
    os.environ.get("CI") and not torch.cuda.is_available(),
    "The test is too slow on CPUs and will be executed on CircleCI's GPU jobs.",
)


def skipIfUnsupportedMinOpsetVersion(min_opset_version, current_opset_version=None):
    """
    Skips tests for ONNX Opset versions older than min_opset_version.
    """

    def skip_dec(func):
        def wrapper(self):
            try:
                opset_version = self.opset_version
            except AttributeError:
                opset_version = current_opset_version
            if opset_version < min_opset_version:
                raise unittest.SkipTest(
                    f"Unsupported opset_version {opset_version}"
                    f", required is {min_opset_version}"
                )
            return func(self)

        return wrapper

    return skip_dec


def skipIfUnsupportedMinTorchVersion(min_version):
    """
    Skips tests for PyTorch versions older than min_version.
    """
    reason = f"module 'torch' has __version__ {torch.__version__}" f", required is: {min_version}"
    return unittest.skipIf(not min_torch_version(min_version), reason)


# TODO: Remove after PyTorch 1.11.1+ is used by detectron2's CI
def _pytorch1111_symbolic_opset9_to(g, self, *args):
    """aten::to() symbolic that must be used for testing with PyTorch < 1.11.1."""

    def is_aten_to_device_only(args):
        if len(args) == 4:
            # aten::to(Tensor, Device, bool, bool, memory_format)
            return (
                args[0].node().kind() == "prim::device"
                or args[0].type().isSubtypeOf(ListType.ofInts())
                or (
                    sym_help._is_value(args[0])
                    and args[0].node().kind() == "onnx::Constant"
                    and isinstance(args[0].node()["value"], str)
                )
            )
        elif len(args) == 5:
            # aten::to(Tensor, Device, ScalarType, bool, bool, memory_format)
            # When dtype is None, this is a aten::to(device) call
            dtype = sym_help._get_const(args[1], "i", "dtype")
            return dtype is None
        elif len(args) in (6, 7):
            # aten::to(Tensor, ScalarType, Layout, Device, bool, bool, memory_format)
            # aten::to(Tensor, ScalarType, Layout, Device, bool, bool, bool, memory_format)
            # When dtype is None, this is a aten::to(device) call
            dtype = sym_help._get_const(args[0], "i", "dtype")
            return dtype is None
        return False

    # ONNX doesn't have a concept of a device, so we ignore device-only casts
    if is_aten_to_device_only(args):
        return self

    if len(args) == 4:
        # TestONNXRuntime::test_ones_bool shows args[0] of aten::to can be onnx::Constant[Tensor]
        # In this case, the constant value is a tensor not int,
        # so sym_help._maybe_get_const(args[0], 'i') would not work.
        dtype = args[0]
        if sym_help._is_value(args[0]) and args[0].node().kind() == "onnx::Constant":
            tval = args[0].node()["value"]
            if isinstance(tval, torch.Tensor):
                if len(tval.shape) == 0:
                    tval = tval.item()
                    dtype = int(tval)
                else:
                    dtype = tval

        if sym_help._is_value(dtype) or isinstance(dtype, torch.Tensor):
            # aten::to(Tensor, Tensor, bool, bool, memory_format)
            dtype = args[0].type().scalarType()
            return g.op("Cast", self, to_i=sym_help.cast_pytorch_to_onnx[dtype])
        else:
            # aten::to(Tensor, ScalarType, bool, bool, memory_format)
            # memory_format is ignored
            return g.op("Cast", self, to_i=sym_help.scalar_type_to_onnx[dtype])
    elif len(args) == 5:
        # aten::to(Tensor, Device, ScalarType, bool, bool, memory_format)
        dtype = sym_help._get_const(args[1], "i", "dtype")
        # memory_format is ignored
        return g.op("Cast", self, to_i=sym_help.scalar_type_to_onnx[dtype])
    elif len(args) == 6:
        # aten::to(Tensor, ScalarType, Layout, Device, bool, bool, memory_format)
        dtype = sym_help._get_const(args[0], "i", "dtype")
        # Layout, device and memory_format are ignored
        return g.op("Cast", self, to_i=sym_help.scalar_type_to_onnx[dtype])
    elif len(args) == 7:
        # aten::to(Tensor, ScalarType, Layout, Device, bool, bool, bool, memory_format)
        dtype = sym_help._get_const(args[0], "i", "dtype")
        # Layout, device and memory_format are ignored
        return g.op("Cast", self, to_i=sym_help.scalar_type_to_onnx[dtype])
    else:
        return sym_help._onnx_unsupported("Unknown aten::to signature")


# TODO: Remove after PyTorch 1.11.1+ is used by detectron2's CI
def _pytorch1111_symbolic_opset9_repeat_interleave(g, self, repeats, dim=None, output_size=None):

    # from torch.onnx.symbolic_helper import ScalarType
    from torch.onnx.symbolic_opset9 import expand, unsqueeze

    input = self
    # if dim is None flatten
    # By default, use the flattened input array, and return a flat output array
    if sym_help._is_none(dim):
        input = sym_help._reshape_helper(g, self, g.op("Constant", value_t=torch.tensor([-1])))
        dim = 0
    else:
        dim = sym_help._maybe_get_scalar(dim)

    repeats_dim = sym_help._get_tensor_rank(repeats)
    repeats_sizes = sym_help._get_tensor_sizes(repeats)
    input_sizes = sym_help._get_tensor_sizes(input)
    if repeats_dim is None:
        raise RuntimeError(
            "Unsupported: ONNX export of repeat_interleave for unknown " "repeats rank."
        )
    if repeats_sizes is None:
        raise RuntimeError(
            "Unsupported: ONNX export of repeat_interleave for unknown " "repeats size."
        )
    if input_sizes is None:
        raise RuntimeError(
            "Unsupported: ONNX export of repeat_interleave for unknown " "input size."
        )

    input_sizes_temp = input_sizes.copy()
    for idx, input_size in enumerate(input_sizes):
        if input_size is None:
            input_sizes[idx], input_sizes_temp[idx] = 0, -1

    # Cases where repeats is an int or single value tensor
    if repeats_dim == 0 or (repeats_dim == 1 and repeats_sizes[0] == 1):
        if not sym_help._is_tensor(repeats):
            repeats = g.op("Constant", value_t=torch.LongTensor(repeats))
        if input_sizes[dim] == 0:
            return sym_help._onnx_opset_unsupported_detailed(
                "repeat_interleave",
                9,
                13,
                "Unsupported along dimension with unknown input size",
            )
        else:
            reps = input_sizes[dim]
            repeats = expand(g, repeats, g.op("Constant", value_t=torch.tensor([reps])), None)

    # Cases where repeats is a 1 dim Tensor
    elif repeats_dim == 1:
        if input_sizes[dim] == 0:
            return sym_help._onnx_opset_unsupported_detailed(
                "repeat_interleave",
                9,
                13,
                "Unsupported along dimension with unknown input size",
            )
        if repeats_sizes[0] is None:
            return sym_help._onnx_opset_unsupported_detailed(
                "repeat_interleave", 9, 13, "Unsupported for cases with dynamic repeats"
            )
        assert (
            repeats_sizes[0] == input_sizes[dim]
        ), "repeats must have the same size as input along dim"
        reps = repeats_sizes[0]
    else:
        raise RuntimeError("repeats must be 0-dim or 1-dim tensor")

    final_splits = list()
    r_splits = sym_help._repeat_interleave_split_helper(g, repeats, reps, 0)
    if isinstance(r_splits, torch._C.Value):
        r_splits = [r_splits]
    i_splits = sym_help._repeat_interleave_split_helper(g, input, reps, dim)
    if isinstance(i_splits, torch._C.Value):
        i_splits = [i_splits]
    input_sizes[dim], input_sizes_temp[dim] = -1, 1
    for idx, r_split in enumerate(r_splits):
        i_split = unsqueeze(g, i_splits[idx], dim + 1)
        r_concat = [
            g.op("Constant", value_t=torch.LongTensor(input_sizes_temp[: dim + 1])),
            r_split,
            g.op("Constant", value_t=torch.LongTensor(input_sizes_temp[dim + 1 :])),
        ]
        r_concat = g.op("Concat", *r_concat, axis_i=0)
        i_split = expand(g, i_split, r_concat, None)
        i_split = sym_help._reshape_helper(
            g,
            i_split,
            g.op("Constant", value_t=torch.LongTensor(input_sizes)),
            allowzero=0,
        )
        final_splits.append(i_split)
    return g.op("Concat", *final_splits, axis_i=dim)