File size: 14,429 Bytes
b213d84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
# Copyright (c) Facebook, Inc. and its affiliates.
import math
import numpy as np
from enum import IntEnum, unique
from typing import List, Tuple, Union
import torch
from torch import device

_RawBoxType = Union[List[float], Tuple[float, ...], torch.Tensor, np.ndarray]


@unique
class BoxMode(IntEnum):
    """
    Enum of different ways to represent a box.
    """

    XYXY_ABS = 0
    """
    (x0, y0, x1, y1) in absolute floating points coordinates.
    The coordinates in range [0, width or height].
    """
    XYWH_ABS = 1
    """
    (x0, y0, w, h) in absolute floating points coordinates.
    """
    XYXY_REL = 2
    """
    Not yet supported!
    (x0, y0, x1, y1) in range [0, 1]. They are relative to the size of the image.
    """
    XYWH_REL = 3
    """
    Not yet supported!
    (x0, y0, w, h) in range [0, 1]. They are relative to the size of the image.
    """
    XYWHA_ABS = 4
    """
    (xc, yc, w, h, a) in absolute floating points coordinates.
    (xc, yc) is the center of the rotated box, and the angle a is in degrees ccw.
    """

    @staticmethod
    def convert(box: _RawBoxType, from_mode: "BoxMode", to_mode: "BoxMode") -> _RawBoxType:
        """
        Args:
            box: can be a k-tuple, k-list or an Nxk array/tensor, where k = 4 or 5
            from_mode, to_mode (BoxMode)

        Returns:
            The converted box of the same type.
        """
        if from_mode == to_mode:
            return box

        original_type = type(box)
        is_numpy = isinstance(box, np.ndarray)
        single_box = isinstance(box, (list, tuple))
        if single_box:
            assert len(box) == 4 or len(box) == 5, (
                "BoxMode.convert takes either a k-tuple/list or an Nxk array/tensor,"
                " where k == 4 or 5"
            )
            arr = torch.tensor(box)[None, :]
        else:
            # avoid modifying the input box
            if is_numpy:
                arr = torch.from_numpy(np.asarray(box)).clone()
            else:
                arr = box.clone()

        assert to_mode not in [BoxMode.XYXY_REL, BoxMode.XYWH_REL] and from_mode not in [
            BoxMode.XYXY_REL,
            BoxMode.XYWH_REL,
        ], "Relative mode not yet supported!"

        if from_mode == BoxMode.XYWHA_ABS and to_mode == BoxMode.XYXY_ABS:
            assert (
                arr.shape[-1] == 5
            ), "The last dimension of input shape must be 5 for XYWHA format"
            original_dtype = arr.dtype
            arr = arr.double()

            w = arr[:, 2]
            h = arr[:, 3]
            a = arr[:, 4]
            c = torch.abs(torch.cos(a * math.pi / 180.0))
            s = torch.abs(torch.sin(a * math.pi / 180.0))
            # This basically computes the horizontal bounding rectangle of the rotated box
            new_w = c * w + s * h
            new_h = c * h + s * w

            # convert center to top-left corner
            arr[:, 0] -= new_w / 2.0
            arr[:, 1] -= new_h / 2.0
            # bottom-right corner
            arr[:, 2] = arr[:, 0] + new_w
            arr[:, 3] = arr[:, 1] + new_h

            arr = arr[:, :4].to(dtype=original_dtype)
        elif from_mode == BoxMode.XYWH_ABS and to_mode == BoxMode.XYWHA_ABS:
            original_dtype = arr.dtype
            arr = arr.double()
            arr[:, 0] += arr[:, 2] / 2.0
            arr[:, 1] += arr[:, 3] / 2.0
            angles = torch.zeros((arr.shape[0], 1), dtype=arr.dtype)
            arr = torch.cat((arr, angles), axis=1).to(dtype=original_dtype)
        else:
            if to_mode == BoxMode.XYXY_ABS and from_mode == BoxMode.XYWH_ABS:
                arr[:, 2] += arr[:, 0]
                arr[:, 3] += arr[:, 1]
            elif from_mode == BoxMode.XYXY_ABS and to_mode == BoxMode.XYWH_ABS:
                arr[:, 2] -= arr[:, 0]
                arr[:, 3] -= arr[:, 1]
            else:
                raise NotImplementedError(
                    "Conversion from BoxMode {} to {} is not supported yet".format(
                        from_mode, to_mode
                    )
                )

        if single_box:
            return original_type(arr.flatten().tolist())
        if is_numpy:
            return arr.numpy()
        else:
            return arr


class Boxes:
    """
    This structure stores a list of boxes as a Nx4 torch.Tensor.
    It supports some common methods about boxes
    (`area`, `clip`, `nonempty`, etc),
    and also behaves like a Tensor
    (support indexing, `to(device)`, `.device`, and iteration over all boxes)

    Attributes:
        tensor (torch.Tensor): float matrix of Nx4. Each row is (x1, y1, x2, y2).
    """

    def __init__(self, tensor: torch.Tensor):
        """
        Args:
            tensor (Tensor[float]): a Nx4 matrix.  Each row is (x1, y1, x2, y2).
        """
        if not isinstance(tensor, torch.Tensor):
            tensor = torch.as_tensor(tensor, dtype=torch.float32, device=torch.device("cpu"))
        else:
            tensor = tensor.to(torch.float32)
        if tensor.numel() == 0:
            # Use reshape, so we don't end up creating a new tensor that does not depend on
            # the inputs (and consequently confuses jit)
            tensor = tensor.reshape((-1, 4)).to(dtype=torch.float32)
        assert tensor.dim() == 2 and tensor.size(-1) == 4, tensor.size()

        self.tensor = tensor

    def clone(self) -> "Boxes":
        """
        Clone the Boxes.

        Returns:
            Boxes
        """
        return Boxes(self.tensor.clone())

    def to(self, device: torch.device):
        # Boxes are assumed float32 and does not support to(dtype)
        return Boxes(self.tensor.to(device=device))

    def area(self) -> torch.Tensor:
        """
        Computes the area of all the boxes.

        Returns:
            torch.Tensor: a vector with areas of each box.
        """
        box = self.tensor
        area = (box[:, 2] - box[:, 0]) * (box[:, 3] - box[:, 1])
        return area

    def clip(self, box_size: Tuple[int, int]) -> None:
        """
        Clip (in place) the boxes by limiting x coordinates to the range [0, width]
        and y coordinates to the range [0, height].

        Args:
            box_size (height, width): The clipping box's size.
        """
        assert torch.isfinite(self.tensor).all(), "Box tensor contains infinite or NaN!"
        h, w = box_size
        x1 = self.tensor[:, 0].clamp(min=0, max=w)
        y1 = self.tensor[:, 1].clamp(min=0, max=h)
        x2 = self.tensor[:, 2].clamp(min=0, max=w)
        y2 = self.tensor[:, 3].clamp(min=0, max=h)
        self.tensor = torch.stack((x1, y1, x2, y2), dim=-1)

    def nonempty(self, threshold: float = 0.0) -> torch.Tensor:
        """
        Find boxes that are non-empty.
        A box is considered empty, if either of its side is no larger than threshold.

        Returns:
            Tensor:
                a binary vector which represents whether each box is empty
                (False) or non-empty (True).
        """
        box = self.tensor
        widths = box[:, 2] - box[:, 0]
        heights = box[:, 3] - box[:, 1]
        keep = (widths > threshold) & (heights > threshold)
        return keep

    def __getitem__(self, item) -> "Boxes":
        """
        Args:
            item: int, slice, or a BoolTensor

        Returns:
            Boxes: Create a new :class:`Boxes` by indexing.

        The following usage are allowed:

        1. `new_boxes = boxes[3]`: return a `Boxes` which contains only one box.
        2. `new_boxes = boxes[2:10]`: return a slice of boxes.
        3. `new_boxes = boxes[vector]`, where vector is a torch.BoolTensor
           with `length = len(boxes)`. Nonzero elements in the vector will be selected.

        Note that the returned Boxes might share storage with this Boxes,
        subject to Pytorch's indexing semantics.
        """
        if isinstance(item, int):
            return Boxes(self.tensor[item].view(1, -1))
        b = self.tensor[item]
        assert b.dim() == 2, "Indexing on Boxes with {} failed to return a matrix!".format(item)
        return Boxes(b)

    def __len__(self) -> int:
        return self.tensor.shape[0]

    def __repr__(self) -> str:
        return "Boxes(" + str(self.tensor) + ")"

    def inside_box(self, box_size: Tuple[int, int], boundary_threshold: int = 0) -> torch.Tensor:
        """
        Args:
            box_size (height, width): Size of the reference box.
            boundary_threshold (int): Boxes that extend beyond the reference box
                boundary by more than boundary_threshold are considered "outside".

        Returns:
            a binary vector, indicating whether each box is inside the reference box.
        """
        height, width = box_size
        inds_inside = (
            (self.tensor[..., 0] >= -boundary_threshold)
            & (self.tensor[..., 1] >= -boundary_threshold)
            & (self.tensor[..., 2] < width + boundary_threshold)
            & (self.tensor[..., 3] < height + boundary_threshold)
        )
        return inds_inside

    def get_centers(self) -> torch.Tensor:
        """
        Returns:
            The box centers in a Nx2 array of (x, y).
        """
        return (self.tensor[:, :2] + self.tensor[:, 2:]) / 2

    def scale(self, scale_x: float, scale_y: float) -> None:
        """
        Scale the box with horizontal and vertical scaling factors
        """
        self.tensor[:, 0::2] *= scale_x
        self.tensor[:, 1::2] *= scale_y

    @classmethod
    def cat(cls, boxes_list: List["Boxes"]) -> "Boxes":
        """
        Concatenates a list of Boxes into a single Boxes

        Arguments:
            boxes_list (list[Boxes])

        Returns:
            Boxes: the concatenated Boxes
        """
        assert isinstance(boxes_list, (list, tuple))
        if len(boxes_list) == 0:
            return cls(torch.empty(0))
        assert all([isinstance(box, Boxes) for box in boxes_list])

        # use torch.cat (v.s. layers.cat) so the returned boxes never share storage with input
        cat_boxes = cls(torch.cat([b.tensor for b in boxes_list], dim=0))
        return cat_boxes

    @property
    def device(self) -> device:
        return self.tensor.device

    # type "Iterator[torch.Tensor]", yield, and iter() not supported by torchscript
    # https://github.com/pytorch/pytorch/issues/18627
    @torch.jit.unused
    def __iter__(self):
        """
        Yield a box as a Tensor of shape (4,) at a time.
        """
        yield from self.tensor


def pairwise_intersection(boxes1: Boxes, boxes2: Boxes) -> torch.Tensor:
    """
    Given two lists of boxes of size N and M,
    compute the intersection area between __all__ N x M pairs of boxes.
    The box order must be (xmin, ymin, xmax, ymax)

    Args:
        boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively.

    Returns:
        Tensor: intersection, sized [N,M].
    """
    boxes1, boxes2 = boxes1.tensor, boxes2.tensor
    width_height = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) - torch.max(
        boxes1[:, None, :2], boxes2[:, :2]
    )  # [N,M,2]

    width_height.clamp_(min=0)  # [N,M,2]
    intersection = width_height.prod(dim=2)  # [N,M]
    return intersection


# implementation from https://github.com/kuangliu/torchcv/blob/master/torchcv/utils/box.py
# with slight modifications
def pairwise_iou(boxes1: Boxes, boxes2: Boxes) -> torch.Tensor:
    """
    Given two lists of boxes of size N and M, compute the IoU
    (intersection over union) between **all** N x M pairs of boxes.
    The box order must be (xmin, ymin, xmax, ymax).

    Args:
        boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively.

    Returns:
        Tensor: IoU, sized [N,M].
    """
    area1 = boxes1.area()  # [N]
    area2 = boxes2.area()  # [M]
    inter = pairwise_intersection(boxes1, boxes2)

    # handle empty boxes
    iou = torch.where(
        inter > 0,
        inter / (area1[:, None] + area2 - inter),
        torch.zeros(1, dtype=inter.dtype, device=inter.device),
    )
    return iou


def pairwise_ioa(boxes1: Boxes, boxes2: Boxes) -> torch.Tensor:
    """
    Similar to :func:`pariwise_iou` but compute the IoA (intersection over boxes2 area).

    Args:
        boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively.

    Returns:
        Tensor: IoA, sized [N,M].
    """
    area2 = boxes2.area()  # [M]
    inter = pairwise_intersection(boxes1, boxes2)

    # handle empty boxes
    ioa = torch.where(
        inter > 0, inter / area2, torch.zeros(1, dtype=inter.dtype, device=inter.device)
    )
    return ioa


def pairwise_point_box_distance(points: torch.Tensor, boxes: Boxes):
    """
    Pairwise distance between N points and M boxes. The distance between a
    point and a box is represented by the distance from the point to 4 edges
    of the box. Distances are all positive when the point is inside the box.

    Args:
        points: Nx2 coordinates. Each row is (x, y)
        boxes: M boxes

    Returns:
        Tensor: distances of size (N, M, 4). The 4 values are distances from
            the point to the left, top, right, bottom of the box.
    """
    x, y = points.unsqueeze(dim=2).unbind(dim=1)  # (N, 1)
    x0, y0, x1, y1 = boxes.tensor.unsqueeze(dim=0).unbind(dim=2)  # (1, M)
    return torch.stack([x - x0, y - y0, x1 - x, y1 - y], dim=2)


def matched_pairwise_iou(boxes1: Boxes, boxes2: Boxes) -> torch.Tensor:
    """
    Compute pairwise intersection over union (IOU) of two sets of matched
    boxes that have the same number of boxes.
    Similar to :func:`pairwise_iou`, but computes only diagonal elements of the matrix.

    Args:
        boxes1 (Boxes): bounding boxes, sized [N,4].
        boxes2 (Boxes): same length as boxes1
    Returns:
        Tensor: iou, sized [N].
    """
    assert len(boxes1) == len(
        boxes2
    ), "boxlists should have the same" "number of entries, got {}, {}".format(
        len(boxes1), len(boxes2)
    )
    area1 = boxes1.area()  # [N]
    area2 = boxes2.area()  # [N]
    box1, box2 = boxes1.tensor, boxes2.tensor
    lt = torch.max(box1[:, :2], box2[:, :2])  # [N,2]
    rb = torch.min(box1[:, 2:], box2[:, 2:])  # [N,2]
    wh = (rb - lt).clamp(min=0)  # [N,2]
    inter = wh[:, 0] * wh[:, 1]  # [N]
    iou = inter / (area1 + area2 - inter)  # [N]
    return iou