Spaces:
Running
on
L40S
Running
on
L40S
File size: 12,590 Bytes
b213d84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 |
import os
from typing import Union
import cv2
import numpy as np
import torch
from diffusers.image_processor import VaeImageProcessor
from PIL import Image
from SCHP import SCHP # type: ignore
from utils.densepose_for_mask import DensePose # type: ignore
DENSE_INDEX_MAP = {
"background": [0],
"torso": [1, 2],
"right hand": [3],
"left hand": [4],
"right foot": [5],
"left foot": [6],
"right thigh": [7, 9],
"left thigh": [8, 10],
"right leg": [11, 13],
"left leg": [12, 14],
"left big arm": [15, 17],
"right big arm": [16, 18],
"left forearm": [19, 21],
"right forearm": [20, 22],
"face": [23, 24],
"thighs": [7, 8, 9, 10],
"legs": [11, 12, 13, 14],
"hands": [3, 4],
"feet": [5, 6],
"big arms": [15, 16, 17, 18],
"forearms": [19, 20, 21, 22],
}
ATR_MAPPING = {
"Background": 0,
"Hat": 1,
"Hair": 2,
"Sunglasses": 3,
"Upper-clothes": 4,
"Skirt": 5,
"Pants": 6,
"Dress": 7,
"Belt": 8,
"Left-shoe": 9,
"Right-shoe": 10,
"Face": 11,
"Left-leg": 12,
"Right-leg": 13,
"Left-arm": 14,
"Right-arm": 15,
"Bag": 16,
"Scarf": 17,
}
LIP_MAPPING = {
"Background": 0,
"Hat": 1,
"Hair": 2,
"Glove": 3,
"Sunglasses": 4,
"Upper-clothes": 5,
"Dress": 6,
"Coat": 7,
"Socks": 8,
"Pants": 9,
"Jumpsuits": 10,
"Scarf": 11,
"Skirt": 12,
"Face": 13,
"Left-arm": 14,
"Right-arm": 15,
"Left-leg": 16,
"Right-leg": 17,
"Left-shoe": 18,
"Right-shoe": 19,
}
PROTECT_BODY_PARTS = {
"upper": ["Left-leg", "Right-leg"],
"lower": ["Right-arm", "Left-arm", "Face"],
"overall": [],
"inner": ["Left-leg", "Right-leg"],
"outer": ["Left-leg", "Right-leg"],
}
PROTECT_CLOTH_PARTS = {
"upper": {"ATR": ["Skirt", "Pants"], "LIP": ["Skirt", "Pants"]},
"lower": {"ATR": ["Upper-clothes"], "LIP": ["Upper-clothes", "Coat"]},
"overall": {"ATR": [], "LIP": []},
"inner": {
"ATR": ["Dress", "Coat", "Skirt", "Pants"],
"LIP": ["Dress", "Coat", "Skirt", "Pants", "Jumpsuits"],
},
"outer": {
"ATR": ["Dress", "Pants", "Skirt"],
"LIP": ["Upper-clothes", "Dress", "Pants", "Skirt", "Jumpsuits"],
},
}
MASK_CLOTH_PARTS = {
"upper": ["Upper-clothes", "Coat", "Dress", "Jumpsuits"],
"lower": ["Pants", "Skirt", "Dress", "Jumpsuits"],
"overall": ["Upper-clothes", "Dress", "Pants", "Skirt", "Coat", "Jumpsuits"],
"inner": ["Upper-clothes"],
"outer": [
"Coat",
],
}
MASK_DENSE_PARTS = {
"upper": ["torso", "big arms", "forearms"],
"lower": ["thighs", "legs"],
"overall": ["torso", "thighs", "legs", "big arms", "forearms"],
"inner": ["torso"],
"outer": ["torso", "big arms", "forearms"],
}
schp_public_protect_parts = [
"Hat",
"Hair",
"Sunglasses",
"Left-shoe",
"Right-shoe",
"Bag",
"Glove",
"Scarf",
]
schp_protect_parts = {
"upper": ["Left-leg", "Right-leg", "Skirt", "Pants", "Jumpsuits"],
"lower": ["Left-arm", "Right-arm", "Upper-clothes", "Coat"],
"overall": [],
"inner": ["Left-leg", "Right-leg", "Skirt", "Pants", "Jumpsuits", "Coat"],
"outer": ["Left-leg", "Right-leg", "Skirt", "Pants", "Jumpsuits", "Upper-clothes"],
}
schp_mask_parts = {
"upper": ["Upper-clothes", "Dress", "Coat", "Jumpsuits"],
"lower": ["Pants", "Skirt", "Dress", "Jumpsuits", "socks"],
"overall": [
"Upper-clothes",
"Dress",
"Pants",
"Skirt",
"Coat",
"Jumpsuits",
"socks",
],
"inner": ["Upper-clothes"],
"outer": [
"Coat",
],
}
dense_mask_parts = {
"upper": ["torso", "big arms", "forearms"],
"lower": ["thighs", "legs"],
"overall": ["torso", "thighs", "legs", "big arms", "forearms"],
"inner": ["torso"],
"outer": ["torso", "big arms", "forearms"],
}
def vis_mask(image, mask):
image = np.array(image).astype(np.uint8)
mask = np.array(mask).astype(np.uint8)
mask[mask > 127] = 255
mask[mask <= 127] = 0
mask = np.expand_dims(mask, axis=-1)
mask = np.repeat(mask, 3, axis=-1)
mask = mask / 255
return Image.fromarray((image * (1 - mask)).astype(np.uint8))
def part_mask_of(part: Union[str, list], parse: np.ndarray, mapping: dict):
if isinstance(part, str):
part = [part]
mask = np.zeros_like(parse)
for _ in part:
if _ not in mapping:
continue
if isinstance(mapping[_], list):
for i in mapping[_]:
mask += parse == i
else:
mask += parse == mapping[_]
return mask
def hull_mask(mask_area: np.ndarray):
ret, binary = cv2.threshold(mask_area, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(
binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
)
hull_mask = np.zeros_like(mask_area)
for c in contours:
hull = cv2.convexHull(c)
hull_mask = cv2.fillPoly(np.zeros_like(mask_area), [hull], 255) | hull_mask
return hull_mask
class AutoMasker:
def __init__(
self,
device="cuda",
):
densepose_ckpt = "./ckpts/densepose"
schp_ckpt = "./ckpts/schp"
np.random.seed(0)
torch.manual_seed(0)
torch.cuda.manual_seed(0)
self.densepose_processor = DensePose(densepose_ckpt, device)
self.schp_processor_atr = SCHP(
ckpt_path=os.path.join(schp_ckpt, "exp-schp-201908301523-atr.pth"),
device=device,
)
self.schp_processor_lip = SCHP(
ckpt_path=os.path.join(schp_ckpt, "exp-schp-201908261155-lip.pth"),
device=device,
)
self.mask_processor = VaeImageProcessor(
vae_scale_factor=8,
do_normalize=False,
do_binarize=True,
do_convert_grayscale=True,
)
def process_densepose(self, image_or_path):
return self.densepose_processor(image_or_path, resize=1024)
def process_schp_lip(self, image_or_path):
return self.schp_processor_lip(image_or_path)
def process_schp_atr(self, image_or_path):
return self.schp_processor_atr(image_or_path)
def preprocess_image(self, image_or_path):
return {
"densepose": self.densepose_processor(image_or_path, resize=1024),
"schp_atr": self.schp_processor_atr(image_or_path),
"schp_lip": self.schp_processor_lip(image_or_path),
}
@staticmethod
def cloth_agnostic_mask(
densepose_mask: Image.Image,
schp_lip_mask: Image.Image,
schp_atr_mask: Image.Image,
part: str = "overall",
**kwargs,
):
assert part in [
"upper",
"lower",
"overall",
"inner",
"outer",
], f"part should be one of ['upper', 'lower', 'overall', 'inner', 'outer'], but got {part}"
w, h = densepose_mask.size
dilate_kernel = max(w, h) // 250
dilate_kernel = dilate_kernel if dilate_kernel % 2 == 1 else dilate_kernel + 1
dilate_kernel = np.ones((dilate_kernel, dilate_kernel), np.uint8)
kernal_size = max(w, h) // 25
kernal_size = kernal_size if kernal_size % 2 == 1 else kernal_size + 1
densepose_mask = np.array(densepose_mask)
schp_lip_mask = np.array(schp_lip_mask)
schp_atr_mask = np.array(schp_atr_mask)
# Strong Protect Area (Hands, Face, Accessory, Feet)
hands_protect_area = part_mask_of(
["hands", "feet"], densepose_mask, DENSE_INDEX_MAP
)
hands_protect_area = cv2.dilate(hands_protect_area, dilate_kernel, iterations=1)
hands_protect_area = hands_protect_area & (
part_mask_of(
["Left-arm", "Right-arm", "Left-leg", "Right-leg"],
schp_atr_mask,
ATR_MAPPING,
)
| part_mask_of(
["Left-arm", "Right-arm", "Left-leg", "Right-leg"],
schp_lip_mask,
LIP_MAPPING,
)
)
face_protect_area = part_mask_of("Face", schp_lip_mask, LIP_MAPPING)
strong_protect_area = hands_protect_area | face_protect_area
# Weak Protect Area (Hair, Irrelevant Clothes, Body Parts)
body_protect_area = part_mask_of(
PROTECT_BODY_PARTS[part], schp_lip_mask, LIP_MAPPING
) | part_mask_of(PROTECT_BODY_PARTS[part], schp_atr_mask, ATR_MAPPING)
hair_protect_area = part_mask_of(
["Hair"], schp_lip_mask, LIP_MAPPING
) | part_mask_of(["Hair"], schp_atr_mask, ATR_MAPPING)
cloth_protect_area = part_mask_of(
PROTECT_CLOTH_PARTS[part]["LIP"], schp_lip_mask, LIP_MAPPING
) | part_mask_of(PROTECT_CLOTH_PARTS[part]["ATR"], schp_atr_mask, ATR_MAPPING)
accessory_protect_area = part_mask_of(
(
accessory_parts := [
"Hat",
"Glove",
"Sunglasses",
"Bag",
"Left-shoe",
"Right-shoe",
"Scarf",
"Socks",
]
),
schp_lip_mask,
LIP_MAPPING,
) | part_mask_of(accessory_parts, schp_atr_mask, ATR_MAPPING)
weak_protect_area = (
body_protect_area
| cloth_protect_area
| hair_protect_area
| strong_protect_area
| accessory_protect_area
)
# Mask Area
strong_mask_area = part_mask_of(
MASK_CLOTH_PARTS[part], schp_lip_mask, LIP_MAPPING
) | part_mask_of(MASK_CLOTH_PARTS[part], schp_atr_mask, ATR_MAPPING)
background_area = part_mask_of(
["Background"], schp_lip_mask, LIP_MAPPING
) & part_mask_of(["Background"], schp_atr_mask, ATR_MAPPING)
mask_dense_area = part_mask_of(
MASK_DENSE_PARTS[part], densepose_mask, DENSE_INDEX_MAP
)
mask_dense_area = cv2.resize(
mask_dense_area.astype(np.uint8),
None,
fx=0.25,
fy=0.25,
interpolation=cv2.INTER_NEAREST,
)
mask_dense_area = cv2.dilate(mask_dense_area, dilate_kernel, iterations=2)
mask_dense_area = cv2.resize(
mask_dense_area.astype(np.uint8),
None,
fx=4,
fy=4,
interpolation=cv2.INTER_NEAREST,
)
mask_area = (
np.ones_like(densepose_mask) & (~weak_protect_area) & (~background_area)
) | mask_dense_area
mask_area = (
hull_mask(mask_area * 255) // 255
) # Convex Hull to expand the mask area
mask_area = mask_area & (~weak_protect_area)
mask_area = cv2.GaussianBlur(mask_area * 255, (kernal_size, kernal_size), 0)
mask_area[mask_area < 25] = 0
mask_area[mask_area >= 25] = 1
mask_area = (mask_area | strong_mask_area) & (~strong_protect_area)
mask_area = cv2.dilate(mask_area, dilate_kernel, iterations=1)
return Image.fromarray(mask_area * 255)
def __call__(
self,
image: Union[str, Image.Image],
mask_type: str = "upper",
):
assert mask_type in [
"upper",
"lower",
"overall",
"inner",
"outer",
], f"mask_type should be one of ['upper', 'lower', 'overall', 'inner', 'outer'], but got {mask_type}"
preprocess_results = self.preprocess_image(image)
mask = self.cloth_agnostic_mask(
preprocess_results["densepose"],
preprocess_results["schp_lip"],
preprocess_results["schp_atr"],
part=mask_type,
)
return {
"mask": mask,
"densepose": preprocess_results["densepose"],
"schp_lip": preprocess_results["schp_lip"],
"schp_atr": preprocess_results["schp_atr"],
}
if __name__ == "__main__":
import os
import sys
from PIL import Image
automasker = AutoMasker()
image_path = sys.argv[1]
image = Image.open(image_path).convert("RGB")
outputs = automasker(
image,
"upper",
# "lower",
)
mask = outputs["mask"]
# densepose = outputs["densepose"] # densepose I map, range 0~24
# schp_lip = outputs["schp_lip"]
# schp_atr = outputs["schp_atr"]
mask.save(".".join(image_path.split(".")[:-1]) + "_mask.jpg")
|