Spaces:
Running
on
L40S
Running
on
L40S
File size: 18,422 Bytes
b213d84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 |
# -*- coding: utf-8 -*-
# Copyright (c) Facebook, Inc. and its affiliates.
import concurrent.futures
import logging
import numpy as np
import time
import weakref
from typing import List, Mapping, Optional
import torch
from torch.nn.parallel import DataParallel, DistributedDataParallel
import detectron2.utils.comm as comm
from detectron2.utils.events import EventStorage, get_event_storage
from detectron2.utils.logger import _log_api_usage
__all__ = ["HookBase", "TrainerBase", "SimpleTrainer", "AMPTrainer"]
class HookBase:
"""
Base class for hooks that can be registered with :class:`TrainerBase`.
Each hook can implement 4 methods. The way they are called is demonstrated
in the following snippet:
::
hook.before_train()
for iter in range(start_iter, max_iter):
hook.before_step()
trainer.run_step()
hook.after_step()
iter += 1
hook.after_train()
Notes:
1. In the hook method, users can access ``self.trainer`` to access more
properties about the context (e.g., model, current iteration, or config
if using :class:`DefaultTrainer`).
2. A hook that does something in :meth:`before_step` can often be
implemented equivalently in :meth:`after_step`.
If the hook takes non-trivial time, it is strongly recommended to
implement the hook in :meth:`after_step` instead of :meth:`before_step`.
The convention is that :meth:`before_step` should only take negligible time.
Following this convention will allow hooks that do care about the difference
between :meth:`before_step` and :meth:`after_step` (e.g., timer) to
function properly.
"""
trainer: "TrainerBase" = None
"""
A weak reference to the trainer object. Set by the trainer when the hook is registered.
"""
def before_train(self):
"""
Called before the first iteration.
"""
pass
def after_train(self):
"""
Called after the last iteration.
"""
pass
def before_step(self):
"""
Called before each iteration.
"""
pass
def after_backward(self):
"""
Called after the backward pass of each iteration.
"""
pass
def after_step(self):
"""
Called after each iteration.
"""
pass
def state_dict(self):
"""
Hooks are stateless by default, but can be made checkpointable by
implementing `state_dict` and `load_state_dict`.
"""
return {}
class TrainerBase:
"""
Base class for iterative trainer with hooks.
The only assumption we made here is: the training runs in a loop.
A subclass can implement what the loop is.
We made no assumptions about the existence of dataloader, optimizer, model, etc.
Attributes:
iter(int): the current iteration.
start_iter(int): The iteration to start with.
By convention the minimum possible value is 0.
max_iter(int): The iteration to end training.
storage(EventStorage): An EventStorage that's opened during the course of training.
"""
def __init__(self) -> None:
self._hooks: List[HookBase] = []
self.iter: int = 0
self.start_iter: int = 0
self.max_iter: int
self.storage: EventStorage
_log_api_usage("trainer." + self.__class__.__name__)
def register_hooks(self, hooks: List[Optional[HookBase]]) -> None:
"""
Register hooks to the trainer. The hooks are executed in the order
they are registered.
Args:
hooks (list[Optional[HookBase]]): list of hooks
"""
hooks = [h for h in hooks if h is not None]
for h in hooks:
assert isinstance(h, HookBase)
# To avoid circular reference, hooks and trainer cannot own each other.
# This normally does not matter, but will cause memory leak if the
# involved objects contain __del__:
# See http://engineering.hearsaysocial.com/2013/06/16/circular-references-in-python/
h.trainer = weakref.proxy(self)
self._hooks.extend(hooks)
def train(self, start_iter: int, max_iter: int):
"""
Args:
start_iter, max_iter (int): See docs above
"""
logger = logging.getLogger(__name__)
logger.info("Starting training from iteration {}".format(start_iter))
self.iter = self.start_iter = start_iter
self.max_iter = max_iter
with EventStorage(start_iter) as self.storage:
try:
self.before_train()
for self.iter in range(start_iter, max_iter):
self.before_step()
self.run_step()
self.after_step()
# self.iter == max_iter can be used by `after_train` to
# tell whether the training successfully finished or failed
# due to exceptions.
self.iter += 1
except Exception:
logger.exception("Exception during training:")
raise
finally:
self.after_train()
def before_train(self):
for h in self._hooks:
h.before_train()
def after_train(self):
self.storage.iter = self.iter
for h in self._hooks:
h.after_train()
def before_step(self):
# Maintain the invariant that storage.iter == trainer.iter
# for the entire execution of each step
self.storage.iter = self.iter
for h in self._hooks:
h.before_step()
def after_backward(self):
for h in self._hooks:
h.after_backward()
def after_step(self):
for h in self._hooks:
h.after_step()
def run_step(self):
raise NotImplementedError
def state_dict(self):
ret = {"iteration": self.iter}
hooks_state = {}
for h in self._hooks:
sd = h.state_dict()
if sd:
name = type(h).__qualname__
if name in hooks_state:
# TODO handle repetitive stateful hooks
continue
hooks_state[name] = sd
if hooks_state:
ret["hooks"] = hooks_state
return ret
def load_state_dict(self, state_dict):
logger = logging.getLogger(__name__)
self.iter = state_dict["iteration"]
for key, value in state_dict.get("hooks", {}).items():
for h in self._hooks:
try:
name = type(h).__qualname__
except AttributeError:
continue
if name == key:
h.load_state_dict(value)
break
else:
logger.warning(f"Cannot find the hook '{key}', its state_dict is ignored.")
class SimpleTrainer(TrainerBase):
"""
A simple trainer for the most common type of task:
single-cost single-optimizer single-data-source iterative optimization,
optionally using data-parallelism.
It assumes that every step, you:
1. Compute the loss with a data from the data_loader.
2. Compute the gradients with the above loss.
3. Update the model with the optimizer.
All other tasks during training (checkpointing, logging, evaluation, LR schedule)
are maintained by hooks, which can be registered by :meth:`TrainerBase.register_hooks`.
If you want to do anything fancier than this,
either subclass TrainerBase and implement your own `run_step`,
or write your own training loop.
"""
def __init__(
self,
model,
data_loader,
optimizer,
gather_metric_period=1,
zero_grad_before_forward=False,
async_write_metrics=False,
):
"""
Args:
model: a torch Module. Takes a data from data_loader and returns a
dict of losses.
data_loader: an iterable. Contains data to be used to call model.
optimizer: a torch optimizer.
gather_metric_period: an int. Every gather_metric_period iterations
the metrics are gathered from all the ranks to rank 0 and logged.
zero_grad_before_forward: whether to zero the gradients before the forward.
async_write_metrics: bool. If True, then write metrics asynchronously to improve
training speed
"""
super().__init__()
"""
We set the model to training mode in the trainer.
However it's valid to train a model that's in eval mode.
If you want your model (or a submodule of it) to behave
like evaluation during training, you can overwrite its train() method.
"""
model.train()
self.model = model
self.data_loader = data_loader
# to access the data loader iterator, call `self._data_loader_iter`
self._data_loader_iter_obj = None
self.optimizer = optimizer
self.gather_metric_period = gather_metric_period
self.zero_grad_before_forward = zero_grad_before_forward
self.async_write_metrics = async_write_metrics
# create a thread pool that can execute non critical logic in run_step asynchronically
# use only 1 worker so tasks will be executred in order of submitting.
self.concurrent_executor = concurrent.futures.ThreadPoolExecutor(max_workers=1)
def run_step(self):
"""
Implement the standard training logic described above.
"""
assert self.model.training, "[SimpleTrainer] model was changed to eval mode!"
start = time.perf_counter()
"""
If you want to do something with the data, you can wrap the dataloader.
"""
data = next(self._data_loader_iter)
data_time = time.perf_counter() - start
if self.zero_grad_before_forward:
"""
If you need to accumulate gradients or do something similar, you can
wrap the optimizer with your custom `zero_grad()` method.
"""
self.optimizer.zero_grad()
"""
If you want to do something with the losses, you can wrap the model.
"""
loss_dict = self.model(data)
if isinstance(loss_dict, torch.Tensor):
losses = loss_dict
loss_dict = {"total_loss": loss_dict}
else:
losses = sum(loss_dict.values())
if not self.zero_grad_before_forward:
"""
If you need to accumulate gradients or do something similar, you can
wrap the optimizer with your custom `zero_grad()` method.
"""
self.optimizer.zero_grad()
losses.backward()
self.after_backward()
if self.async_write_metrics:
# write metrics asynchronically
self.concurrent_executor.submit(
self._write_metrics, loss_dict, data_time, iter=self.iter
)
else:
self._write_metrics(loss_dict, data_time)
"""
If you need gradient clipping/scaling or other processing, you can
wrap the optimizer with your custom `step()` method. But it is
suboptimal as explained in https://arxiv.org/abs/2006.15704 Sec 3.2.4
"""
self.optimizer.step()
@property
def _data_loader_iter(self):
# only create the data loader iterator when it is used
if self._data_loader_iter_obj is None:
self._data_loader_iter_obj = iter(self.data_loader)
return self._data_loader_iter_obj
def reset_data_loader(self, data_loader_builder):
"""
Delete and replace the current data loader with a new one, which will be created
by calling `data_loader_builder` (without argument).
"""
del self.data_loader
data_loader = data_loader_builder()
self.data_loader = data_loader
self._data_loader_iter_obj = None
def _write_metrics(
self,
loss_dict: Mapping[str, torch.Tensor],
data_time: float,
prefix: str = "",
iter: Optional[int] = None,
) -> None:
logger = logging.getLogger(__name__)
iter = self.iter if iter is None else iter
if (iter + 1) % self.gather_metric_period == 0:
try:
SimpleTrainer.write_metrics(loss_dict, data_time, iter, prefix)
except Exception:
logger.exception("Exception in writing metrics: ")
raise
@staticmethod
def write_metrics(
loss_dict: Mapping[str, torch.Tensor],
data_time: float,
cur_iter: int,
prefix: str = "",
) -> None:
"""
Args:
loss_dict (dict): dict of scalar losses
data_time (float): time taken by the dataloader iteration
prefix (str): prefix for logging keys
"""
metrics_dict = {k: v.detach().cpu().item() for k, v in loss_dict.items()}
metrics_dict["data_time"] = data_time
storage = get_event_storage()
# Keep track of data time per rank
storage.put_scalar("rank_data_time", data_time, cur_iter=cur_iter)
# Gather metrics among all workers for logging
# This assumes we do DDP-style training, which is currently the only
# supported method in detectron2.
all_metrics_dict = comm.gather(metrics_dict)
if comm.is_main_process():
# data_time among workers can have high variance. The actual latency
# caused by data_time is the maximum among workers.
data_time = np.max([x.pop("data_time") for x in all_metrics_dict])
storage.put_scalar("data_time", data_time, cur_iter=cur_iter)
# average the rest metrics
metrics_dict = {
k: np.mean([x[k] for x in all_metrics_dict]) for k in all_metrics_dict[0].keys()
}
total_losses_reduced = sum(metrics_dict.values())
if not np.isfinite(total_losses_reduced):
raise FloatingPointError(
f"Loss became infinite or NaN at iteration={cur_iter}!\n"
f"loss_dict = {metrics_dict}"
)
storage.put_scalar(
"{}total_loss".format(prefix), total_losses_reduced, cur_iter=cur_iter
)
if len(metrics_dict) > 1:
storage.put_scalars(cur_iter=cur_iter, **metrics_dict)
def state_dict(self):
ret = super().state_dict()
ret["optimizer"] = self.optimizer.state_dict()
return ret
def load_state_dict(self, state_dict):
super().load_state_dict(state_dict)
self.optimizer.load_state_dict(state_dict["optimizer"])
def after_train(self):
super().after_train()
self.concurrent_executor.shutdown(wait=True)
class AMPTrainer(SimpleTrainer):
"""
Like :class:`SimpleTrainer`, but uses PyTorch's native automatic mixed precision
in the training loop.
"""
def __init__(
self,
model,
data_loader,
optimizer,
gather_metric_period=1,
zero_grad_before_forward=False,
grad_scaler=None,
precision: torch.dtype = torch.float16,
log_grad_scaler: bool = False,
async_write_metrics=False,
):
"""
Args:
model, data_loader, optimizer, gather_metric_period, zero_grad_before_forward,
async_write_metrics: same as in :class:`SimpleTrainer`.
grad_scaler: torch GradScaler to automatically scale gradients.
precision: torch.dtype as the target precision to cast to in computations
"""
unsupported = "AMPTrainer does not support single-process multi-device training!"
if isinstance(model, DistributedDataParallel):
assert not (model.device_ids and len(model.device_ids) > 1), unsupported
assert not isinstance(model, DataParallel), unsupported
super().__init__(
model, data_loader, optimizer, gather_metric_period, zero_grad_before_forward
)
if grad_scaler is None:
from torch.cuda.amp import GradScaler
grad_scaler = GradScaler()
self.grad_scaler = grad_scaler
self.precision = precision
self.log_grad_scaler = log_grad_scaler
def run_step(self):
"""
Implement the AMP training logic.
"""
assert self.model.training, "[AMPTrainer] model was changed to eval mode!"
assert torch.cuda.is_available(), "[AMPTrainer] CUDA is required for AMP training!"
from torch.cuda.amp import autocast
start = time.perf_counter()
data = next(self._data_loader_iter)
data_time = time.perf_counter() - start
if self.zero_grad_before_forward:
self.optimizer.zero_grad()
with autocast(dtype=self.precision):
loss_dict = self.model(data)
if isinstance(loss_dict, torch.Tensor):
losses = loss_dict
loss_dict = {"total_loss": loss_dict}
else:
losses = sum(loss_dict.values())
if not self.zero_grad_before_forward:
self.optimizer.zero_grad()
self.grad_scaler.scale(losses).backward()
if self.log_grad_scaler:
storage = get_event_storage()
storage.put_scalar("[metric]grad_scaler", self.grad_scaler.get_scale())
self.after_backward()
if self.async_write_metrics:
# write metrics asynchronically
self.concurrent_executor.submit(
self._write_metrics, loss_dict, data_time, iter=self.iter
)
else:
self._write_metrics(loss_dict, data_time)
self.grad_scaler.step(self.optimizer)
self.grad_scaler.update()
def state_dict(self):
ret = super().state_dict()
ret["grad_scaler"] = self.grad_scaler.state_dict()
return ret
def load_state_dict(self, state_dict):
super().load_state_dict(state_dict)
self.grad_scaler.load_state_dict(state_dict["grad_scaler"])
|