File size: 21,372 Bytes
529ed6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ce9334
529ed6b
 
b976944
529ed6b
0ce9334
 
78df986
0ce9334
 
529ed6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e3c75f
529ed6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
import logging
import logging.handlers
import os
import pickle  # nosec
import threading
import time
from queue import Empty, Queue
from typing import Any, Optional

import async_inference_pb2  # type: ignore
import async_inference_pb2_grpc  # type: ignore
import grpc
import torch

from lerobot.common.robot_devices.robots.utils import make_robot

# Create logs directory if it doesn't exist
os.makedirs("logs", exist_ok=True)

# Set up logging with both console and file output
logger = logging.getLogger("robot_client")
logger.setLevel(logging.INFO)

# Console handler
console_handler = logging.StreamHandler()
console_handler.setFormatter(
    logging.Formatter("%(asctime)s [CLIENT] [%(levelname)s] %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
)
logger.addHandler(console_handler)

# File handler - creates a new log file for each run
file_handler = logging.handlers.RotatingFileHandler(
    f"logs/robot_client_{int(time.time())}.log",
    maxBytes=10 * 1024 * 1024,  # 10MB
    backupCount=5,
)
file_handler.setFormatter(
    logging.Formatter("%(asctime)s [CLIENT] [%(levelname)s] %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
)
logger.addHandler(file_handler)

environment_dt = 1 / 30
idle_wait = 0.1


class TimedData:
    def __init__(self, timestamp: float, data: Any, timestep: int):
        """Initialize a TimedData object.

        Args:
            timestamp: Unix timestamp relative to data's creation.
            data: The actual data to wrap a timestamp around.
        """
        self.timestamp = timestamp
        self.data = data
        self.timestep = timestep

    def get_data(self):
        return self.data

    def get_timestamp(self):
        return self.timestamp

    def get_timestep(self):
        return self.timestep


class TimedAction(TimedData):
    def __init__(self, timestamp: float, action: torch.Tensor, timestep: int):
        super().__init__(timestamp=timestamp, data=action, timestep=timestep)

    def get_action(self):
        return self.get_data()


class TimedObservation(TimedData):
    def __init__(
        self, timestamp: float, observation: dict[str, torch.Tensor], timestep: int, transfer_state: int = 0
    ):
        super().__init__(timestamp=timestamp, data=observation, timestep=timestep)
        self.transfer_state = transfer_state

    def get_observation(self):
        return self.get_data()


class TinyPolicyConfig:
    def __init__(
        self,
        policy_type: str = "act",
        pretrained_name_or_path: str = "fracapuano/act_so100_test",
        device: str = "cpu",
    ):
        self.policy_type = policy_type
        self.pretrained_name_or_path = pretrained_name_or_path
        self.device = device


class RobotClient:
    def __init__(
        self,
        server_address: Optional[str] = None,
        policy_type: str = "act",  # "pi0"
        pretrained_name_or_path: str = "fracapuano/act_so100_test",  # "lerobot/pi0"
        policy_device: str = "mps",
    ):
        # Use environment variable if server_address is not provided
        if server_address is None:
            server_address = os.getenv("SERVER_ADDRESS", "localhost:8080")
            logger.info(f"No server address provided, using default address: {server_address}")

        self.policy_config = TinyPolicyConfig(policy_type, pretrained_name_or_path, policy_device)
        self.channel = grpc.insecure_channel(server_address)
        self.stub = async_inference_pb2_grpc.AsyncInferenceStub(self.channel)
        logger.info(f"Initializing client to connect to server at {server_address}")

        self.running = False
        self.first_observation_sent = False
        self.latest_action = 0
        self.action_chunk_size = 20

        self.action_queue = Queue()
        self.start_barrier = threading.Barrier(
            3
        )  # 3 threads: observation sender, action receiver, action executor

        # Create a lock for robot access
        self.robot_lock = threading.Lock()

        # Stats for logging
        self.obs_sent_count = 0
        self.actions_received_count = 0
        self.actions_executed_count = 0
        self.last_obs_sent_time = 0
        self.last_action_received_time = 0

        start_time = time.time()
        self.robot = make_robot("so100")
        self.robot.connect()
        connect_time = time.time()
        logger.info(f"Robot connection time: {connect_time - start_time:.4f}s")

        time.sleep(idle_wait)  # sleep waiting for cameras to activate
        logger.info("Robot connected and ready")

    def timestamps(self):
        """Get the timestamps of the actions in the queue"""
        return sorted([action.get_timestep() for action in self.action_queue.queue])

    def start(self):
        """Start the robot client and connect to the policy server"""
        try:
            # client-server handshake
            start_time = time.time()
            self.stub.Ready(async_inference_pb2.Empty())
            end_time = time.time()
            logger.info(f"Connected to policy server in {end_time - start_time:.4f}s")

            # send policy instructions
            policy_config_bytes = pickle.dumps(self.policy_config)
            policy_setup = async_inference_pb2.PolicySetup(
                transfer_state=async_inference_pb2.TRANSFER_BEGIN, data=policy_config_bytes
            )

            logger.info("Sending policy instructions to policy server")
            logger.info(
                f"Policy type: {self.policy_config.policy_type} | "
                f"Pretrained name or path: {self.policy_config.pretrained_name_or_path} | "
                f"Device: {self.policy_config.device}"
            )

            self.stub.SendPolicyInstructions(policy_setup)

            self.running = True

            return True

        except grpc.RpcError as e:
            logger.error(f"Failed to connect to policy server: {e}")
            return False

    def stop(self):
        """Stop the robot client"""
        self.running = False

        self.robot.disconnect()
        logger.info("Robot disconnected")

        self.channel.close()
        logger.info("Client stopped, channel closed")

        # Log final stats
        logger.info(
            f"Session stats - Observations sent: {self.obs_sent_count}, "
            f"Action chunks received: {self.actions_received_count}, "
            f"Actions executed: {self.actions_executed_count}"
        )

    def send_observation(
        self,
        obs: TimedObservation,
        transfer_state: async_inference_pb2.TransferState = async_inference_pb2.TRANSFER_MIDDLE,
    ) -> bool:
        """Send observation to the policy server.
        Returns True if the observation was sent successfully, False otherwise."""
        if not self.running:
            logger.warning("Client not running")
            return False

        assert isinstance(obs, TimedObservation), "Input observation needs to be a TimedObservation!"

        start_time = time.time()
        observation_bytes = pickle.dumps(obs)
        serialize_time = time.time()
        logger.debug(f"Observation serialization time: {serialize_time - start_time:.6f}s")

        observation = async_inference_pb2.Observation(transfer_state=transfer_state, data=observation_bytes)

        try:
            send_start = time.time()
            _ = self.stub.SendObservations(iter([observation]))
            send_end = time.time()

            self.obs_sent_count += 1
            obs_timestep = obs.get_timestep()

            logger.info(
                f"Sent observation #{obs_timestep} | "
                f"Serialize time: {serialize_time - start_time:.6f}s | "
                f"Network time: {send_end - send_start:.6f}s | "
                f"Total time: {send_end - start_time:.6f}s"
            )

            if transfer_state == async_inference_pb2.TRANSFER_BEGIN:
                self.first_observation_sent = True

            self.last_obs_sent_time = send_end
            return True

        except grpc.RpcError as e:
            logger.error(f"Error sending observation #{obs.get_timestep()}: {e}")
            return False

    def _validate_action(self, action: TimedAction):
        """Received actions are keps only when they have been produced for now or later, never before"""
        return not action.get_timestamp() < self.latest_action

    def _validate_action_chunk(self, actions: list[TimedAction]):
        assert len(actions) == self.action_chunk_size, (
            f"Action batch size must match action chunk!size: {len(actions)} != {self.action_chunk_size}"
        )
        assert all(self._validate_action(action) for action in actions), "Invalid action in chunk"

        return True

    def _inspect_action_queue(self):
        queue_size = self.action_queue.qsize()
        timestamps = sorted([action.get_timestep() for action in self.action_queue.queue])
        logger.debug(f"Queue size: {queue_size}, Queue contents: {timestamps}")
        return queue_size, timestamps

    def _clear_queue(self):
        """Clear the existing queue"""
        start_time = time.time()
        old_size = self.action_queue.qsize()

        while not self.action_queue.empty():
            try:
                self.action_queue.get_nowait()
            except Empty:
                break

        end_time = time.time()
        logger.debug(f"Queue cleared: {old_size} items removed in {end_time - start_time:.6f}s")

    def _fill_action_queue(self, actions: list[TimedAction]):
        """Fill the action queue with incoming valid actions"""
        start_time = time.time()
        valid_count = 0

        for action in actions:
            if self._validate_action(action):
                self.action_queue.put(action)
                valid_count += 1

        end_time = time.time()
        logger.debug(
            f"Queue filled: {valid_count}/{len(actions)} valid actions added in {end_time - start_time:.6f}s"
        )

    def _clear_and_fill_action_queue(self, actions: list[TimedAction]):
        """Clear the existing queue and fill it with new actions.
        This is a higher-level function that combines clearing and filling operations.

        Args:
            actions: List of TimedAction instances to queue
        """
        start_time = time.time()
        logger.info(f"Current latest action: {self.latest_action}")

        # Get queue state before changes
        old_size, old_timesteps = self._inspect_action_queue()

        # Log incoming actions
        incoming_timesteps = [a.get_timestep() for a in actions]
        logger.info(f"Incoming actions: {len(actions)} items with timesteps {incoming_timesteps}")

        # Clear and fill
        clear_start = time.time()
        self._clear_queue()
        clear_end = time.time()

        fill_start = time.time()
        self._fill_action_queue(actions)
        fill_end = time.time()

        # Get queue state after changes
        new_size, new_timesteps = self._inspect_action_queue()

        end_time = time.time()
        logger.info(
            f"Queue update complete | "
            f"Before: {old_size} items | "
            f"After: {new_size} items | "
            f"Previous content: {old_timesteps} | "
            f"Incoming content: {incoming_timesteps} | "
            f"Current contents: {new_timesteps}"
        )

        logger.info(
            f"Clear time: {clear_end - clear_start:.6f}s | "
            f"Fill time: {fill_end - fill_start:.6f}s | "
            f"Total time: {end_time - start_time:.6f}s"
        )

    def receive_actions(self):
        """Receive actions from the policy server"""
        # Wait at barrier for synchronized start
        self.start_barrier.wait()
        logger.info("Action receiving thread starting")

        while self.running:
            try:
                # Use StreamActions to get a stream of actions from the server
                for actions_chunk in self.stub.StreamActions(async_inference_pb2.Empty()):
                    receive_time = time.time()

                    # Deserialize bytes back into list[TimedAction]
                    deserialize_start = time.time()
                    timed_actions = pickle.loads(actions_chunk.data)  # nosec
                    deserialize_end = time.time()

                    # Calculate network latency if we have matching observations
                    if len(timed_actions) > 0:
                        first_action_timestep = timed_actions[0].get_timestep()
                        server_to_client_latency = receive_time - self.last_obs_sent_time

                        logger.info(
                            f"Received action chunk for step #{first_action_timestep} | "
                            f"Network latency (server->client): {server_to_client_latency:.6f}s | "
                            f"Deserialization time: {deserialize_end - deserialize_start:.6f}s"
                        )

                    # Update action queue
                    _ = time.time()
                    self._clear_and_fill_action_queue(timed_actions)
                    update_end = time.time()

                    self.actions_received_count += 1
                    self.last_action_received_time = receive_time

                    logger.info(
                        f"Action chunk processed | "
                        f"Total processing time: {update_end - receive_time:.6f}s | "
                        f"Round-trip time since observation sent: {receive_time - self.last_obs_sent_time:.6f}s"
                    )

            except grpc.RpcError as e:
                logger.error(f"Error receiving actions: {e}")
                time.sleep(idle_wait)  # Avoid tight loop on error

    def _get_next_action(self) -> Optional[TimedAction]:
        """Get the next action from the queue"""
        try:
            action = self.action_queue.get_nowait()
            return action

        except Empty:
            return None

    def execute_actions(self):
        """Continuously execute actions from the queue"""
        # Wait at barrier for synchronized start
        self.start_barrier.wait()
        logger.info("Action execution thread starting")

        while self.running:
            # Get the next action from the queue
            cycle_start = time.time()
            time.sleep(environment_dt)

            get_start = time.time()
            timed_action = self._get_next_action()
            get_end = time.time()

            if timed_action is not None:
                # self.latest_action = timed_action.get_timestep()
                _ = self.latest_action
                self.latest_action = timed_action.get_timestamp()

                action_timestep = timed_action.get_timestep()

                # Convert action to tensor and send to robot - Acquire lock before accessing the robot
                lock_start = time.time()
                if self.robot_lock.acquire(timeout=1.0):  # Wait up to 1 second to acquire the lock
                    lock_acquired = time.time()
                    try:
                        send_start = time.time()
                        self.robot.send_action(timed_action.get_action())
                        send_end = time.time()

                        self.actions_executed_count += 1
                        logger.info(
                            f"Executed action #{action_timestep} | "
                            f"Queue get time: {get_end - get_start:.6f}s | "
                            f"Lock wait time: {lock_acquired - lock_start:.6f}s | "
                            f"Action send time: {send_end - send_start:.6f}s | "
                            f"Total execution time: {send_end - cycle_start:.6f}s | "
                            f"Action latency: {send_end - timed_action.get_timestamp():.6f}s | "
                            f"Queue size: {self.action_queue.qsize()}"
                        )
                    finally:
                        # Always release the lock in a finally block to ensure it's released
                        self.robot_lock.release()
                else:
                    logger.warning("Could not acquire robot lock for action execution, retrying next cycle")
            else:
                if get_end - get_start > 0.001:  # Only log if there was a measurable delay
                    logger.debug(f"No action available, get time: {get_end - get_start:.6f}s")
                time.sleep(idle_wait)

    def stream_observations(self, get_observation_fn):
        """Continuously stream observations to the server"""
        # Wait at barrier for synchronized start
        self.start_barrier.wait()
        logger.info("Observation streaming thread starting")

        first_observation = True
        while self.running:
            try:
                # Get serialized observation bytes from the function
                cycle_start = time.time()
                time.sleep(environment_dt)

                get_start = time.time()
                observation = get_observation_fn()
                get_end = time.time()

                # Skip if observation is None (couldn't acquire lock)
                if observation is None:
                    logger.warning("Failed to get observation, skipping cycle")
                    continue

                # Set appropriate transfer state
                if first_observation:
                    state = async_inference_pb2.TRANSFER_BEGIN
                    first_observation = False
                else:
                    state = async_inference_pb2.TRANSFER_MIDDLE

                obs_timestep = observation.get_timestep()
                logger.debug(f"Got observation #{obs_timestep} in {get_end - get_start:.6f}s, sending...")

                send_start = time.time()
                self.send_observation(observation, state)
                send_end = time.time()

                logger.info(
                    f"Observation #{obs_timestep} cycle complete | "
                    f"Get time: {get_end - get_start:.6f}s | "
                    f"Send time: {send_end - send_start:.6f}s | "
                    f"Total cycle time: {send_end - cycle_start:.6f}s"
                )

            except Exception as e:
                logger.error(f"Error in observation sender: {e}")
                time.sleep(idle_wait)


def async_client():
    # Example of how to use the RobotClient
    client = RobotClient()

    if client.start():
        # Function to generate mock observations
        def get_observation():
            # Create a counter attribute if it doesn't exist
            if not hasattr(get_observation, "counter"):
                get_observation.counter = 0

            # Acquire lock before accessing the robot
            start_time = time.time()
            observation_content = None
            if client.robot_lock.acquire(timeout=1.0):  # Wait up to 1 second to acquire the lock
                lock_time = time.time()
                try:
                    capture_start = time.time()
                    observation_content = client.robot.capture_observation()
                    capture_end = time.time()
                    logger.debug(
                        f"Observation capture | "
                        f"Lock acquisition: {lock_time - start_time:.6f}s | "
                        f"Capture time: {capture_end - capture_start:.6f}s"
                    )
                finally:
                    # Always release the lock in a finally block to ensure it's released
                    client.robot_lock.release()
            else:
                logger.warning("Could not acquire robot lock for observation capture, skipping this cycle")
                return None  # Return None to indicate no observation was captured

            current_time = time.time()
            observation = TimedObservation(
                timestamp=current_time, observation=observation_content, timestep=get_observation.counter
            )

            # Increment counter for next call
            get_observation.counter += 1

            end_time = time.time()
            logger.debug(
                f"Observation #{observation.get_timestep()} prepared | "
                f"Total time: {end_time - start_time:.6f}s"
            )

            return observation

        logger.info("Starting all threads...")

        # Create and start observation sender thread
        obs_thread = threading.Thread(target=client.stream_observations, args=(get_observation,))
        obs_thread.daemon = True

        # Create and start action receiver thread
        action_receiver_thread = threading.Thread(target=client.receive_actions)
        action_receiver_thread.daemon = True

        # Create action execution thread
        action_execution_thread = threading.Thread(target=client.execute_actions)
        action_execution_thread.daemon = True

        # Start all threads
        obs_thread.start()
        action_receiver_thread.start()
        action_execution_thread.start()

        try:
            # Main thread just keeps everything alive
            while client.running:
                time.sleep(idle_wait)

        except KeyboardInterrupt:
            pass

        finally:
            client.stop()
            logger.info("Client stopped")


if __name__ == "__main__":
    async_client()