File size: 16,937 Bytes
529ed6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import List, Optional, Union

import torch
import torch.version
from pytest import Cache
from torch import nn
from transformers import (
    AutoConfig,
    GemmaForCausalLM,
    PaliGemmaForConditionalGeneration,
    PretrainedConfig,
    PreTrainedModel,
)
from transformers.models.auto import CONFIG_MAPPING

from lerobot.common.policies.pi0.flex_attention import flex_attention_forward


def apply_rope(x, positions, max_wavelength=10_000):
    """
    Applies RoPE positions [B, L] to x [B, L, H, D].
    """
    d_half = x.shape[-1] // 2
    device = x.device
    dtype = x.dtype
    x = x.to(torch.float32)

    freq_exponents = (2.0 / x.shape[-1]) * torch.arange(d_half, dtype=torch.float32, device=device)
    timescale = max_wavelength**freq_exponents
    radians = positions[..., None].to(torch.float32) / timescale[None, None, :].to(torch.float32)

    radians = radians[..., None, :]

    sin = torch.sin(radians)  # .to(dtype=dtype)
    cos = torch.cos(radians)  # .to(dtype=dtype)

    x1, x2 = x.split(d_half, dim=-1)
    res = torch.empty_like(x)
    res[..., :d_half] = x1 * cos - x2 * sin
    res[..., d_half:] = x2 * cos + x1 * sin

    return res.to(dtype)


class PaliGemmaWithExpertConfig(PretrainedConfig):
    model_type = "PaliGemmaWithExpertModel"
    sub_configs = {"paligemma_config": AutoConfig, "gemma_expert_config": AutoConfig}

    def __init__(
        self,
        paligemma_config: dict | None = None,
        gemma_expert_config: dict | None = None,
        freeze_vision_encoder: bool = True,
        train_expert_only: bool = True,
        attention_implementation: str = "eager",
        **kwargs,
    ):
        self.freeze_vision_encoder = freeze_vision_encoder
        self.train_expert_only = train_expert_only
        self.attention_implementation = attention_implementation

        if paligemma_config is None:
            # Default config from Pi0
            self.paligemma_config = CONFIG_MAPPING["paligemma"](
                transformers_version="4.48.1",
                _vocab_size=257152,
                bos_token_id=2,
                eos_token_id=1,
                hidden_size=2048,
                image_token_index=257152,
                model_type="paligemma",
                pad_token_id=0,
                projection_dim=2048,
                text_config={
                    "hidden_activation": "gelu_pytorch_tanh",
                    "hidden_size": 2048,
                    "intermediate_size": 16384,
                    "model_type": "gemma",
                    "num_attention_heads": 8,
                    "num_hidden_layers": 18,
                    "num_image_tokens": 256,
                    "num_key_value_heads": 1,
                    "torch_dtype": "float32",
                    "vocab_size": 257152,
                },
                vision_config={
                    "hidden_size": 1152,
                    "intermediate_size": 4304,
                    "model_type": "siglip_vision_model",
                    "num_attention_heads": 16,
                    "num_hidden_layers": 27,
                    "num_image_tokens": 256,
                    "patch_size": 14,
                    "projection_dim": 2048,
                    "projector_hidden_act": "gelu_fast",
                    "torch_dtype": "float32",
                    "vision_use_head": False,
                },
            )
        elif isinstance(self.paligemma_config, dict):
            # Override Pi0 default config for PaliGemma
            if "model_type" not in gemma_expert_config:
                paligemma_config["model_type"] = "paligemma"

            cfg_cls = CONFIG_MAPPING[paligemma_config["model_type"]]
            self.paligemma_config = cfg_cls(**paligemma_config)

        if gemma_expert_config is None:
            # Default config from Pi0
            self.gemma_expert_config = CONFIG_MAPPING["gemma"](
                attention_bias=False,
                attention_dropout=0.0,
                bos_token_id=2,
                eos_token_id=1,
                head_dim=256,
                hidden_act="gelu_pytorch_tanh",
                hidden_activation="gelu_pytorch_tanh",
                hidden_size=1024,
                initializer_range=0.02,
                intermediate_size=4096,
                max_position_embeddings=8192,
                model_type="gemma",
                num_attention_heads=8,
                num_hidden_layers=18,
                num_key_value_heads=1,
                pad_token_id=0,
                rms_norm_eps=1e-06,
                rope_theta=10000.0,
                torch_dtype="float32",
                transformers_version="4.48.1",
                use_cache=True,
                vocab_size=257152,
            )
        elif isinstance(self.gemma_expert_config, dict):
            # Override Pi0 default config for Gemma Expert
            if "model_type" not in gemma_expert_config:
                gemma_expert_config["model_type"] = "gemma"

            cfg_cls = CONFIG_MAPPING[paligemma_config["model_type"]]
            self.gemma_expert_config = cfg_cls(**gemma_expert_config)

        super().__init__(**kwargs)

    def __post_init__(self):
        super().__post_init__()
        if self.train_expert_only and not self.freeze_vision_encoder:
            raise ValueError(
                "You set `freeze_vision_encoder=False` and `train_expert_only=True` which are not compatible."
            )

        if self.attention_implementation not in ["eager", "fa2", "flex"]:
            raise ValueError(
                f"Wrong value provided for `attention_implementation` ({self.attention_implementation}). Expected 'eager', 'fa2' or 'flex'."
            )


class PaliGemmaWithExpertModel(PreTrainedModel):
    config_class = PaliGemmaWithExpertConfig

    def __init__(self, config: PaliGemmaWithExpertConfig):
        super().__init__(config=config)
        self.config = config
        self.paligemma = PaliGemmaForConditionalGeneration(config=config.paligemma_config)
        self.gemma_expert = GemmaForCausalLM(config=config.gemma_expert_config)
        # Remove unused embed_tokens
        self.gemma_expert.model.embed_tokens = None

        self.to_bfloat16_like_physical_intelligence()
        self.set_requires_grad()

    def set_requires_grad(self):
        if self.config.freeze_vision_encoder:
            self.paligemma.vision_tower.eval()
            for params in self.paligemma.vision_tower.parameters():
                params.requires_grad = False

        if self.config.train_expert_only:
            self.paligemma.eval()
            for params in self.paligemma.parameters():
                params.requires_grad = False

    def train(self, mode: bool = True):
        super().train(mode)

        if self.config.freeze_vision_encoder:
            self.paligemma.vision_tower.eval()

        if self.config.train_expert_only:
            self.paligemma.eval()

    def to_bfloat16_like_physical_intelligence(self):
        self.paligemma = self.paligemma.to(dtype=torch.bfloat16)

        params_to_change_dtype = [
            "language_model.model.layers",
            "gemma_expert.model.layers",
            "vision_tower",
            "multi_modal",
        ]
        for name, param in self.named_parameters():
            if any(selector in name for selector in params_to_change_dtype):
                param.data = param.data.to(dtype=torch.bfloat16)

    def embed_image(self, image: torch.Tensor):
        return self.paligemma.get_image_features(image)

    def embed_language_tokens(self, tokens: torch.Tensor):
        return self.paligemma.language_model.model.embed_tokens(tokens)

    # TODO: break down this huge forward into modules or functions
    def forward(
        self,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Union[List[torch.FloatTensor], Cache]] = None,
        inputs_embeds: List[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        fill_kv_cache: Optional[bool] = None,
    ):
        models = [self.paligemma.language_model.model, self.gemma_expert.model]

        for hidden_states in inputs_embeds:
            # TODO this is very inefficient
            # dtype is always the same, batch size too (if > 1 len)
            # device could be trickier in multi gpu edge cases but that's it
            if hidden_states is None:
                continue
            batch_size = hidden_states.shape[0]

        # RMSNorm
        num_layers = self.paligemma.config.text_config.num_hidden_layers
        head_dim = self.paligemma.config.text_config.head_dim
        for layer_idx in range(num_layers):
            query_states = []
            key_states = []
            value_states = []
            for i, hidden_states in enumerate(inputs_embeds):
                if hidden_states is None:
                    continue
                layer = models[i].layers[layer_idx]
                # normalizer = torch.tensor(models[i].config.hidden_size**0.5, dtype=hidden_states.dtype)
                # hidden_states = hidden_states * normalizer
                hidden_states = layer.input_layernorm(hidden_states)

                input_shape = hidden_states.shape[:-1]
                hidden_shape = (*input_shape, -1, layer.self_attn.head_dim)

                hidden_states = hidden_states.to(dtype=torch.bfloat16)
                query_state = layer.self_attn.q_proj(hidden_states).view(hidden_shape)
                key_state = layer.self_attn.k_proj(hidden_states).view(hidden_shape)
                value_state = layer.self_attn.v_proj(hidden_states).view(hidden_shape)

                query_states.append(query_state)
                key_states.append(key_state)
                value_states.append(value_state)

            # B,L,H,D with L sequence length, H number of heads, D head dim
            # concatenate on the number of embeddings/tokens
            query_states = torch.cat(query_states, dim=1)
            key_states = torch.cat(key_states, dim=1)
            value_states = torch.cat(value_states, dim=1)

            query_states = apply_rope(query_states, position_ids)
            key_states = apply_rope(key_states, position_ids)

            if use_cache and past_key_values is None:
                past_key_values = {}

            if use_cache:
                if fill_kv_cache:
                    past_key_values[layer_idx] = {
                        "key_states": key_states,
                        "value_states": value_states,
                    }
                else:
                    # TODO here, some optimization can be done - similar to a `StaticCache` we can declare the `max_len` before.
                    # so we create an empty cache, with just one cuda malloc, and if (in autoregressive case) we reach
                    # the max len, then we (for instance) double the cache size. This implementation already exists
                    # in `transformers`. (molbap)
                    key_states = torch.cat([past_key_values[layer_idx]["key_states"], key_states], dim=1)
                    value_states = torch.cat(
                        [past_key_values[layer_idx]["value_states"], value_states], dim=1
                    )

            attention_interface = self.get_attention_interface()
            att_output = attention_interface(
                attention_mask, batch_size, head_dim, query_states, key_states, value_states
            )
            att_output = att_output.to(dtype=torch.bfloat16)

            # first part of att_output is prefix (up to sequence length, [:, 0:prefix_seq_len])
            outputs_embeds = []
            start = 0
            for i, hidden_states in enumerate(inputs_embeds):
                layer = models[i].layers[layer_idx]

                if hidden_states is not None:
                    end = start + hidden_states.shape[1]

                    if att_output.dtype != layer.self_attn.o_proj.weight.dtype:
                        att_output = att_output.to(layer.self_attn.o_proj.weight.dtype)
                    out_emb = layer.self_attn.o_proj(att_output[:, start:end])

                    # TODO: first dropout (by default 0.0)

                    # first residual
                    out_emb += hidden_states
                    after_first_residual = out_emb.clone()

                    out_emb = layer.post_attention_layernorm(out_emb)
                    out_emb = layer.mlp(out_emb)

                    # TODO: second dropout (by default 0.0)

                    # second residual
                    out_emb += after_first_residual

                    outputs_embeds.append(out_emb)

                    start = end
                else:
                    outputs_embeds.append(None)

            inputs_embeds = outputs_embeds

        # final norm
        outputs_embeds = []
        for i, hidden_states in enumerate(inputs_embeds):
            if hidden_states is not None:
                out_emb = models[i].norm(hidden_states)
                outputs_embeds.append(out_emb)
            else:
                outputs_embeds.append(None)

        return outputs_embeds, past_key_values

    def get_attention_interface(self):
        if self.config.attention_implementation == "fa2":
            attention_interface = self.flash_attention_forward
        elif self.config.attention_implementation == "flex":
            attention_interface = flex_attention_forward
        else:
            attention_interface = self.eager_attention_forward
        return attention_interface

    def flash_attention_forward(
        self, attention_mask, batch_size, head_dim, query_states, key_states, value_states
    ):
        raise NotImplementedError("FA2 is not implemented (yet)")

    def eager_attention_forward(
        self, attention_mask, batch_size, head_dim, query_states, key_states, value_states
    ):
        num_att_heads = self.config.paligemma_config.text_config.num_attention_heads
        num_key_value_heads = self.config.paligemma_config.text_config.num_key_value_heads
        num_key_value_groups = num_att_heads // num_key_value_heads

        # query_states: batch_size, sequence_length, num_att_head, head_dim
        # key_states: batch_size, sequence_length, num_key_value_head, head_dim
        # value_states: batch_size, sequence_length, num_key_value_head, head_dim
        sequence_length = key_states.shape[1]

        key_states = key_states[:, :, :, None, :].expand(
            batch_size, sequence_length, num_key_value_heads, num_key_value_groups, head_dim
        )
        key_states = key_states.reshape(
            batch_size, sequence_length, num_key_value_heads * num_key_value_groups, head_dim
        )

        value_states = value_states[:, :, :, None, :].expand(
            batch_size, sequence_length, num_key_value_heads, num_key_value_groups, head_dim
        )
        value_states = value_states.reshape(
            batch_size, sequence_length, num_key_value_heads * num_key_value_groups, head_dim
        )

        # Attention here is upcasted to float32 to match the original eager implementation.

        query_states = query_states.to(dtype=torch.float32)
        key_states = key_states.to(dtype=torch.float32)

        query_states = query_states.transpose(1, 2)
        key_states = key_states.transpose(1, 2)

        att_weights = torch.matmul(query_states, key_states.transpose(2, 3))
        att_weights *= head_dim**-0.5
        big_neg = -2.3819763e38  # See gemma/modules.py

        masked_att_weights = torch.where(attention_mask[:, None, :, :], att_weights, big_neg)

        probs = nn.functional.softmax(masked_att_weights, dim=-1)
        probs = probs.to(dtype=value_states.dtype)

        # probs: batch_size, num_key_value_head, num_att_head, sequence_length, sequence_length
        # value_states: batch_size, sequence_length, num_att_heads, head_dim

        att_output = torch.matmul(probs, value_states.permute(0, 2, 1, 3))

        att_output = att_output.permute(0, 2, 1, 3)
        # we use -1 because sequence length can change
        att_output = att_output.reshape(batch_size, -1, num_key_value_heads * num_key_value_groups * head_dim)

        return att_output