File size: 35,947 Bytes
529ed6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
#!/usr/bin/env python

# Copyright 2024 Tony Z. Zhao and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Action Chunking Transformer Policy

As per Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware (https://arxiv.org/abs/2304.13705).
The majority of changes here involve removing unused code, unifying naming, and adding helpful comments.
"""

import math
from collections import deque
from itertools import chain
from typing import Callable

import einops
import numpy as np
import torch
import torch.nn.functional as F  # noqa: N812
import torchvision
from torch import Tensor, nn
from torchvision.models._utils import IntermediateLayerGetter
from torchvision.ops.misc import FrozenBatchNorm2d

from lerobot.common.policies.act.configuration_act import ACTConfig
from lerobot.common.policies.normalize import Normalize, Unnormalize
from lerobot.common.policies.pretrained import PreTrainedPolicy


class ACTPolicy(PreTrainedPolicy):
    """
    Action Chunking Transformer Policy as per Learning Fine-Grained Bimanual Manipulation with Low-Cost
    Hardware (paper: https://arxiv.org/abs/2304.13705, code: https://github.com/tonyzhaozh/act)
    """

    config_class = ACTConfig
    name = "act"

    def __init__(
        self,
        config: ACTConfig,
        dataset_stats: dict[str, dict[str, Tensor]] | None = None,
    ):
        """
        Args:
            config: Policy configuration class instance or None, in which case the default instantiation of
                    the configuration class is used.
            dataset_stats: Dataset statistics to be used for normalization. If not passed here, it is expected
                that they will be passed with a call to `load_state_dict` before the policy is used.
        """
        super().__init__(config)
        config.validate_features()
        self.config = config

        self.normalize_inputs = Normalize(config.input_features, config.normalization_mapping, dataset_stats)
        self.normalize_targets = Normalize(
            config.output_features, config.normalization_mapping, dataset_stats
        )
        self.unnormalize_outputs = Unnormalize(
            config.output_features, config.normalization_mapping, dataset_stats
        )

        self.model = ACT(config)

        if config.temporal_ensemble_coeff is not None:
            self.temporal_ensembler = ACTTemporalEnsembler(config.temporal_ensemble_coeff, config.chunk_size)

        self.reset()

    def get_optim_params(self) -> dict:
        # TODO(aliberts, rcadene): As of now, lr_backbone == lr
        # Should we remove this and just `return self.parameters()`?
        return [
            {
                "params": [
                    p
                    for n, p in self.named_parameters()
                    if not n.startswith("model.backbone") and p.requires_grad
                ]
            },
            {
                "params": [
                    p
                    for n, p in self.named_parameters()
                    if n.startswith("model.backbone") and p.requires_grad
                ],
                "lr": self.config.optimizer_lr_backbone,
            },
        ]

    def reset(self):
        """This should be called whenever the environment is reset."""
        if self.config.temporal_ensemble_coeff is not None:
            self.temporal_ensembler.reset()
        else:
            self._action_queue = deque([], maxlen=self.config.n_action_steps)

    @torch.no_grad
    def select_action(self, batch: dict[str, Tensor]) -> Tensor:
        """Select a single action given environment observations.

        This method wraps `select_actions` in order to return one action at a time for execution in the
        environment. It works by managing the actions in a queue and only calling `select_actions` when the
        queue is empty.
        """
        self.eval()

        batch = self.normalize_inputs(batch)
        if self.config.image_features:
            batch = dict(batch)  # shallow copy so that adding a key doesn't modify the original
            batch["observation.images"] = [batch[key] for key in self.config.image_features]

        # If we are doing temporal ensembling, do online updates where we keep track of the number of actions
        # we are ensembling over.
        if self.config.temporal_ensemble_coeff is not None:
            actions = self.model(batch)[0]  # (batch_size, chunk_size, action_dim)
            actions = self.unnormalize_outputs({"action": actions})["action"]
            action = self.temporal_ensembler.update(actions)
            return action

        # Action queue logic for n_action_steps > 1. When the action_queue is depleted, populate it by
        # querying the policy.
        if len(self._action_queue) == 0:
            actions = self.model(batch)[0][:, : self.config.n_action_steps]

            # TODO(rcadene): make _forward return output dictionary?
            actions = self.unnormalize_outputs({"action": actions})["action"]

            # `self.model.forward` returns a (batch_size, n_action_steps, action_dim) tensor, but the queue
            # effectively has shape (n_action_steps, batch_size, *), hence the transpose.
            self._action_queue.extend(actions.transpose(0, 1))
        return self._action_queue.popleft()

    def forward(self, batch: dict[str, Tensor]) -> tuple[Tensor, dict]:
        """Run the batch through the model and compute the loss for training or validation."""
        batch = self.normalize_inputs(batch)
        if self.config.image_features:
            batch = dict(batch)  # shallow copy so that adding a key doesn't modify the original
            batch["observation.images"] = [batch[key] for key in self.config.image_features]

        batch = self.normalize_targets(batch)
        actions_hat, (mu_hat, log_sigma_x2_hat) = self.model(batch)

        l1_loss = (
            F.l1_loss(batch["action"], actions_hat, reduction="none") * ~batch["action_is_pad"].unsqueeze(-1)
        ).mean()

        loss_dict = {"l1_loss": l1_loss.item()}
        if self.config.use_vae:
            # Calculate Dβ‚–β‚—(latent_pdf || standard_normal). Note: After computing the KL-divergence for
            # each dimension independently, we sum over the latent dimension to get the total
            # KL-divergence per batch element, then take the mean over the batch.
            # (See App. B of https://arxiv.org/abs/1312.6114 for more details).
            mean_kld = (
                (-0.5 * (1 + log_sigma_x2_hat - mu_hat.pow(2) - (log_sigma_x2_hat).exp())).sum(-1).mean()
            )
            loss_dict["kld_loss"] = mean_kld.item()
            loss = l1_loss + mean_kld * self.config.kl_weight
        else:
            loss = l1_loss

        return loss, loss_dict


class ACTTemporalEnsembler:
    def __init__(self, temporal_ensemble_coeff: float, chunk_size: int) -> None:
        """Temporal ensembling as described in Algorithm 2 of https://arxiv.org/abs/2304.13705.

        The weights are calculated as wα΅’ = exp(-temporal_ensemble_coeff * i) where wβ‚€ is the oldest action.
        They are then normalized to sum to 1 by dividing by Ξ£wα΅’. Here's some intuition around how the
        coefficient works:
            - Setting it to 0 uniformly weighs all actions.
            - Setting it positive gives more weight to older actions.
            - Setting it negative gives more weight to newer actions.
        NOTE: The default value for `temporal_ensemble_coeff` used by the original ACT work is 0.01. This
        results in older actions being weighed more highly than newer actions (the experiments documented in
        https://github.com/huggingface/lerobot/pull/319 hint at why highly weighing new actions might be
        detrimental: doing so aggressively may diminish the benefits of action chunking).

        Here we use an online method for computing the average rather than caching a history of actions in
        order to compute the average offline. For a simple 1D sequence it looks something like:

        ```
        import torch

        seq = torch.linspace(8, 8.5, 100)
        print(seq)

        m = 0.01
        exp_weights = torch.exp(-m * torch.arange(len(seq)))
        print(exp_weights)

        # Calculate offline
        avg = (exp_weights * seq).sum() / exp_weights.sum()
        print("offline", avg)

        # Calculate online
        for i, item in enumerate(seq):
            if i == 0:
                avg = item
                continue
            avg *= exp_weights[:i].sum()
            avg += item * exp_weights[i]
            avg /= exp_weights[:i+1].sum()
        print("online", avg)
        ```
        """
        self.chunk_size = chunk_size
        self.ensemble_weights = torch.exp(-temporal_ensemble_coeff * torch.arange(chunk_size))
        self.ensemble_weights_cumsum = torch.cumsum(self.ensemble_weights, dim=0)
        self.reset()

    def reset(self):
        """Resets the online computation variables."""
        self.ensembled_actions = None
        # (chunk_size,) count of how many actions are in the ensemble for each time step in the sequence.
        self.ensembled_actions_count = None

    def update(self, actions: Tensor) -> Tensor:
        """
        Takes a (batch, chunk_size, action_dim) sequence of actions, update the temporal ensemble for all
        time steps, and pop/return the next batch of actions in the sequence.
        """
        self.ensemble_weights = self.ensemble_weights.to(device=actions.device)
        self.ensemble_weights_cumsum = self.ensemble_weights_cumsum.to(device=actions.device)
        if self.ensembled_actions is None:
            # Initializes `self._ensembled_action` to the sequence of actions predicted during the first
            # time step of the episode.
            self.ensembled_actions = actions.clone()
            # Note: The last dimension is unsqueeze to make sure we can broadcast properly for tensor
            # operations later.
            self.ensembled_actions_count = torch.ones(
                (self.chunk_size, 1), dtype=torch.long, device=self.ensembled_actions.device
            )
        else:
            # self.ensembled_actions will have shape (batch_size, chunk_size - 1, action_dim). Compute
            # the online update for those entries.
            self.ensembled_actions *= self.ensemble_weights_cumsum[self.ensembled_actions_count - 1]
            self.ensembled_actions += actions[:, :-1] * self.ensemble_weights[self.ensembled_actions_count]
            self.ensembled_actions /= self.ensemble_weights_cumsum[self.ensembled_actions_count]
            self.ensembled_actions_count = torch.clamp(self.ensembled_actions_count + 1, max=self.chunk_size)
            # The last action, which has no prior online average, needs to get concatenated onto the end.
            self.ensembled_actions = torch.cat([self.ensembled_actions, actions[:, -1:]], dim=1)
            self.ensembled_actions_count = torch.cat(
                [self.ensembled_actions_count, torch.ones_like(self.ensembled_actions_count[-1:])]
            )
        # "Consume" the first action.
        action, self.ensembled_actions, self.ensembled_actions_count = (
            self.ensembled_actions[:, 0],
            self.ensembled_actions[:, 1:],
            self.ensembled_actions_count[1:],
        )
        return action


class ACT(nn.Module):
    """Action Chunking Transformer: The underlying neural network for ACTPolicy.

    Note: In this code we use the terms `vae_encoder`, 'encoder', `decoder`. The meanings are as follows.
        - The `vae_encoder` is, as per the literature around variational auto-encoders (VAE), the part of the
          model that encodes the target data (a sequence of actions), and the condition (the robot
          joint-space).
        - A transformer with an `encoder` (not the VAE encoder) and `decoder` (not the VAE decoder) with
          cross-attention is used as the VAE decoder. For these terms, we drop the `vae_` prefix because we
          have an option to train this model without the variational objective (in which case we drop the
          `vae_encoder` altogether, and nothing about this model has anything to do with a VAE).

                                 Transformer
                                 Used alone for inference
                                 (acts as VAE decoder
                                  during training)
                                β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
                                β”‚             Outputs   β”‚
                                β”‚                β–²      β”‚
                                β”‚     β”Œβ”€β”€β”€β”€β”€β–Ίβ”Œβ”€β”€β”€β”€β”€β”€β”€β”  β”‚
                   β”Œβ”€β”€β”€β”€β”€β”€β”     β”‚     β”‚      β”‚Transf.β”‚  β”‚
                   β”‚      β”‚     β”‚     β”œβ”€β”€β”€β”€β”€β–Ίβ”‚decoderβ”‚  β”‚
              β”Œβ”€β”€β”€β”€β”΄β”€β”€β”€β”€β” β”‚     β”‚     β”‚      β”‚       β”‚  β”‚
              β”‚         β”‚ β”‚     β”‚ β”Œβ”€β”€β”€β”΄β”€β”€β”€β”¬β”€β–Ίβ”‚       β”‚  β”‚
              β”‚ VAE     β”‚ β”‚     β”‚ β”‚       β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”˜  β”‚
              β”‚ encoder β”‚ β”‚     β”‚ β”‚Transf.β”‚             β”‚
              β”‚         β”‚ β”‚     β”‚ β”‚encoderβ”‚             β”‚
              β””β”€β”€β”€β–²β”€β”€β”€β”€β”€β”˜ β”‚     β”‚ β”‚       β”‚             β”‚
                  β”‚       β”‚     β”‚ β””β–²β”€β”€β–²β”€β–²β”€β”˜             β”‚
                  β”‚       β”‚     β”‚  β”‚  β”‚ β”‚               β”‚
                inputs    β””β”€β”€β”€β”€β”€β”Όβ”€β”€β”˜  β”‚ image emb.      β”‚
                                β”‚    state emb.         β”‚
                                β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
    """

    def __init__(self, config: ACTConfig):
        # BERT style VAE encoder with input tokens [cls, robot_state, *action_sequence].
        # The cls token forms parameters of the latent's distribution (like this [*means, *log_variances]).
        super().__init__()
        self.config = config

        if self.config.use_vae:
            self.vae_encoder = ACTEncoder(config, is_vae_encoder=True)
            self.vae_encoder_cls_embed = nn.Embedding(1, config.dim_model)
            # Projection layer for joint-space configuration to hidden dimension.
            if self.config.robot_state_feature:
                self.vae_encoder_robot_state_input_proj = nn.Linear(
                    self.config.robot_state_feature.shape[0], config.dim_model
                )
            # Projection layer for action (joint-space target) to hidden dimension.
            self.vae_encoder_action_input_proj = nn.Linear(
                self.config.action_feature.shape[0],
                config.dim_model,
            )
            # Projection layer from the VAE encoder's output to the latent distribution's parameter space.
            self.vae_encoder_latent_output_proj = nn.Linear(config.dim_model, config.latent_dim * 2)
            # Fixed sinusoidal positional embedding for the input to the VAE encoder. Unsqueeze for batch
            # dimension.
            num_input_token_encoder = 1 + config.chunk_size
            if self.config.robot_state_feature:
                num_input_token_encoder += 1
            self.register_buffer(
                "vae_encoder_pos_enc",
                create_sinusoidal_pos_embedding(num_input_token_encoder, config.dim_model).unsqueeze(0),
            )

        # Backbone for image feature extraction.
        if self.config.image_features:
            backbone_model = getattr(torchvision.models, config.vision_backbone)(
                replace_stride_with_dilation=[False, False, config.replace_final_stride_with_dilation],
                weights=config.pretrained_backbone_weights,
                norm_layer=FrozenBatchNorm2d,
            )
            # Note: The assumption here is that we are using a ResNet model (and hence layer4 is the final
            # feature map).
            # Note: The forward method of this returns a dict: {"feature_map": output}.
            self.backbone = IntermediateLayerGetter(backbone_model, return_layers={"layer4": "feature_map"})

        # Transformer (acts as VAE decoder when training with the variational objective).
        self.encoder = ACTEncoder(config)
        self.decoder = ACTDecoder(config)

        # Transformer encoder input projections. The tokens will be structured like
        # [latent, (robot_state), (env_state), (image_feature_map_pixels)].
        if self.config.robot_state_feature:
            self.encoder_robot_state_input_proj = nn.Linear(
                self.config.robot_state_feature.shape[0], config.dim_model
            )
        if self.config.env_state_feature:
            self.encoder_env_state_input_proj = nn.Linear(
                self.config.env_state_feature.shape[0], config.dim_model
            )
        self.encoder_latent_input_proj = nn.Linear(config.latent_dim, config.dim_model)
        if self.config.image_features:
            self.encoder_img_feat_input_proj = nn.Conv2d(
                backbone_model.fc.in_features, config.dim_model, kernel_size=1
            )
        # Transformer encoder positional embeddings.
        n_1d_tokens = 1  # for the latent
        if self.config.robot_state_feature:
            n_1d_tokens += 1
        if self.config.env_state_feature:
            n_1d_tokens += 1
        self.encoder_1d_feature_pos_embed = nn.Embedding(n_1d_tokens, config.dim_model)
        if self.config.image_features:
            self.encoder_cam_feat_pos_embed = ACTSinusoidalPositionEmbedding2d(config.dim_model // 2)

        # Transformer decoder.
        # Learnable positional embedding for the transformer's decoder (in the style of DETR object queries).
        self.decoder_pos_embed = nn.Embedding(config.chunk_size, config.dim_model)

        # Final action regression head on the output of the transformer's decoder.
        self.action_head = nn.Linear(config.dim_model, self.config.action_feature.shape[0])

        self._reset_parameters()

    def _reset_parameters(self):
        """Xavier-uniform initialization of the transformer parameters as in the original code."""
        for p in chain(self.encoder.parameters(), self.decoder.parameters()):
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)

    def forward(self, batch: dict[str, Tensor]) -> tuple[Tensor, tuple[Tensor, Tensor] | tuple[None, None]]:
        """A forward pass through the Action Chunking Transformer (with optional VAE encoder).

        `batch` should have the following structure:
        {
            [robot_state_feature] (optional): (B, state_dim) batch of robot states.

            [image_features]: (B, n_cameras, C, H, W) batch of images.
                AND/OR
            [env_state_feature]: (B, env_dim) batch of environment states.

            [action_feature] (optional, only if training with VAE): (B, chunk_size, action dim) batch of actions.
        }

        Returns:
            (B, chunk_size, action_dim) batch of action sequences
            Tuple containing the latent PDF's parameters (mean, log(σ²)) both as (B, L) tensors where L is the
            latent dimension.
        """
        if self.config.use_vae and self.training:
            assert "action" in batch, (
                "actions must be provided when using the variational objective in training mode."
            )

        if "observation.images" in batch:
            batch_size = batch["observation.images"][0].shape[0]
        else:
            batch_size = batch["observation.environment_state"].shape[0]

        # Prepare the latent for input to the transformer encoder.
        if self.config.use_vae and "action" in batch:
            # Prepare the input to the VAE encoder: [cls, *joint_space_configuration, *action_sequence].
            cls_embed = einops.repeat(
                self.vae_encoder_cls_embed.weight, "1 d -> b 1 d", b=batch_size
            )  # (B, 1, D)
            if self.config.robot_state_feature:
                robot_state_embed = self.vae_encoder_robot_state_input_proj(batch["observation.state"])
                robot_state_embed = robot_state_embed.unsqueeze(1)  # (B, 1, D)
            action_embed = self.vae_encoder_action_input_proj(batch["action"])  # (B, S, D)

            if self.config.robot_state_feature:
                vae_encoder_input = [cls_embed, robot_state_embed, action_embed]  # (B, S+2, D)
            else:
                vae_encoder_input = [cls_embed, action_embed]
            vae_encoder_input = torch.cat(vae_encoder_input, axis=1)

            # Prepare fixed positional embedding.
            # Note: detach() shouldn't be necessary but leaving it the same as the original code just in case.
            pos_embed = self.vae_encoder_pos_enc.clone().detach()  # (1, S+2, D)

            # Prepare key padding mask for the transformer encoder. We have 1 or 2 extra tokens at the start of the
            # sequence depending whether we use the input states or not (cls and robot state)
            # False means not a padding token.
            cls_joint_is_pad = torch.full(
                (batch_size, 2 if self.config.robot_state_feature else 1),
                False,
                device=batch["observation.state"].device,
            )
            key_padding_mask = torch.cat(
                [cls_joint_is_pad, batch["action_is_pad"]], axis=1
            )  # (bs, seq+1 or 2)

            # Forward pass through VAE encoder to get the latent PDF parameters.
            cls_token_out = self.vae_encoder(
                vae_encoder_input.permute(1, 0, 2),
                pos_embed=pos_embed.permute(1, 0, 2),
                key_padding_mask=key_padding_mask,
            )[0]  # select the class token, with shape (B, D)
            latent_pdf_params = self.vae_encoder_latent_output_proj(cls_token_out)
            mu = latent_pdf_params[:, : self.config.latent_dim]
            # This is 2log(sigma). Done this way to match the original implementation.
            log_sigma_x2 = latent_pdf_params[:, self.config.latent_dim :]

            # Sample the latent with the reparameterization trick.
            latent_sample = mu + log_sigma_x2.div(2).exp() * torch.randn_like(mu)
        else:
            # When not using the VAE encoder, we set the latent to be all zeros.
            mu = log_sigma_x2 = None
            # TODO(rcadene, alexander-soare): remove call to `.to` to speedup forward ; precompute and use buffer
            latent_sample = torch.zeros([batch_size, self.config.latent_dim], dtype=torch.float32).to(
                batch["observation.state"].device
            )

        # Prepare transformer encoder inputs.
        encoder_in_tokens = [self.encoder_latent_input_proj(latent_sample)]
        encoder_in_pos_embed = list(self.encoder_1d_feature_pos_embed.weight.unsqueeze(1))
        # Robot state token.
        if self.config.robot_state_feature:
            encoder_in_tokens.append(self.encoder_robot_state_input_proj(batch["observation.state"]))
        # Environment state token.
        if self.config.env_state_feature:
            encoder_in_tokens.append(
                self.encoder_env_state_input_proj(batch["observation.environment_state"])
            )

        # Camera observation features and positional embeddings.
        if self.config.image_features:
            all_cam_features = []
            all_cam_pos_embeds = []

            # For a list of images, the H and W may vary but H*W is constant.
            for img in batch["observation.images"]:
                cam_features = self.backbone(img)["feature_map"]
                cam_pos_embed = self.encoder_cam_feat_pos_embed(cam_features).to(dtype=cam_features.dtype)
                cam_features = self.encoder_img_feat_input_proj(cam_features)

                # Rearrange features to (sequence, batch, dim).
                cam_features = einops.rearrange(cam_features, "b c h w -> (h w) b c")
                cam_pos_embed = einops.rearrange(cam_pos_embed, "b c h w -> (h w) b c")

                all_cam_features.append(cam_features)
                all_cam_pos_embeds.append(cam_pos_embed)

            encoder_in_tokens.extend(torch.cat(all_cam_features, axis=0))
            encoder_in_pos_embed.extend(torch.cat(all_cam_pos_embeds, axis=0))

        # Stack all tokens along the sequence dimension.
        encoder_in_tokens = torch.stack(encoder_in_tokens, axis=0)
        encoder_in_pos_embed = torch.stack(encoder_in_pos_embed, axis=0)

        # Forward pass through the transformer modules.
        encoder_out = self.encoder(encoder_in_tokens, pos_embed=encoder_in_pos_embed)
        # TODO(rcadene, alexander-soare): remove call to `device` ; precompute and use buffer
        decoder_in = torch.zeros(
            (self.config.chunk_size, batch_size, self.config.dim_model),
            dtype=encoder_in_pos_embed.dtype,
            device=encoder_in_pos_embed.device,
        )
        decoder_out = self.decoder(
            decoder_in,
            encoder_out,
            encoder_pos_embed=encoder_in_pos_embed,
            decoder_pos_embed=self.decoder_pos_embed.weight.unsqueeze(1),
        )

        # Move back to (B, S, C).
        decoder_out = decoder_out.transpose(0, 1)

        actions = self.action_head(decoder_out)

        return actions, (mu, log_sigma_x2)


class ACTEncoder(nn.Module):
    """Convenience module for running multiple encoder layers, maybe followed by normalization."""

    def __init__(self, config: ACTConfig, is_vae_encoder: bool = False):
        super().__init__()
        self.is_vae_encoder = is_vae_encoder
        num_layers = config.n_vae_encoder_layers if self.is_vae_encoder else config.n_encoder_layers
        self.layers = nn.ModuleList([ACTEncoderLayer(config) for _ in range(num_layers)])
        self.norm = nn.LayerNorm(config.dim_model) if config.pre_norm else nn.Identity()

    def forward(
        self, x: Tensor, pos_embed: Tensor | None = None, key_padding_mask: Tensor | None = None
    ) -> Tensor:
        for layer in self.layers:
            x = layer(x, pos_embed=pos_embed, key_padding_mask=key_padding_mask)
        x = self.norm(x)
        return x


class ACTEncoderLayer(nn.Module):
    def __init__(self, config: ACTConfig):
        super().__init__()
        self.self_attn = nn.MultiheadAttention(config.dim_model, config.n_heads, dropout=config.dropout)

        # Feed forward layers.
        self.linear1 = nn.Linear(config.dim_model, config.dim_feedforward)
        self.dropout = nn.Dropout(config.dropout)
        self.linear2 = nn.Linear(config.dim_feedforward, config.dim_model)

        self.norm1 = nn.LayerNorm(config.dim_model)
        self.norm2 = nn.LayerNorm(config.dim_model)
        self.dropout1 = nn.Dropout(config.dropout)
        self.dropout2 = nn.Dropout(config.dropout)

        self.activation = get_activation_fn(config.feedforward_activation)
        self.pre_norm = config.pre_norm

    def forward(self, x, pos_embed: Tensor | None = None, key_padding_mask: Tensor | None = None) -> Tensor:
        skip = x
        if self.pre_norm:
            x = self.norm1(x)
        q = k = x if pos_embed is None else x + pos_embed
        x = self.self_attn(q, k, value=x, key_padding_mask=key_padding_mask)
        x = x[0]  # note: [0] to select just the output, not the attention weights
        x = skip + self.dropout1(x)
        if self.pre_norm:
            skip = x
            x = self.norm2(x)
        else:
            x = self.norm1(x)
            skip = x
        x = self.linear2(self.dropout(self.activation(self.linear1(x))))
        x = skip + self.dropout2(x)
        if not self.pre_norm:
            x = self.norm2(x)
        return x


class ACTDecoder(nn.Module):
    def __init__(self, config: ACTConfig):
        """Convenience module for running multiple decoder layers followed by normalization."""
        super().__init__()
        self.layers = nn.ModuleList([ACTDecoderLayer(config) for _ in range(config.n_decoder_layers)])
        self.norm = nn.LayerNorm(config.dim_model)

    def forward(
        self,
        x: Tensor,
        encoder_out: Tensor,
        decoder_pos_embed: Tensor | None = None,
        encoder_pos_embed: Tensor | None = None,
    ) -> Tensor:
        for layer in self.layers:
            x = layer(
                x, encoder_out, decoder_pos_embed=decoder_pos_embed, encoder_pos_embed=encoder_pos_embed
            )
        if self.norm is not None:
            x = self.norm(x)
        return x


class ACTDecoderLayer(nn.Module):
    def __init__(self, config: ACTConfig):
        super().__init__()
        self.self_attn = nn.MultiheadAttention(config.dim_model, config.n_heads, dropout=config.dropout)
        self.multihead_attn = nn.MultiheadAttention(config.dim_model, config.n_heads, dropout=config.dropout)

        # Feed forward layers.
        self.linear1 = nn.Linear(config.dim_model, config.dim_feedforward)
        self.dropout = nn.Dropout(config.dropout)
        self.linear2 = nn.Linear(config.dim_feedforward, config.dim_model)

        self.norm1 = nn.LayerNorm(config.dim_model)
        self.norm2 = nn.LayerNorm(config.dim_model)
        self.norm3 = nn.LayerNorm(config.dim_model)
        self.dropout1 = nn.Dropout(config.dropout)
        self.dropout2 = nn.Dropout(config.dropout)
        self.dropout3 = nn.Dropout(config.dropout)

        self.activation = get_activation_fn(config.feedforward_activation)
        self.pre_norm = config.pre_norm

    def maybe_add_pos_embed(self, tensor: Tensor, pos_embed: Tensor | None) -> Tensor:
        return tensor if pos_embed is None else tensor + pos_embed

    def forward(
        self,
        x: Tensor,
        encoder_out: Tensor,
        decoder_pos_embed: Tensor | None = None,
        encoder_pos_embed: Tensor | None = None,
    ) -> Tensor:
        """
        Args:
            x: (Decoder Sequence, Batch, Channel) tensor of input tokens.
            encoder_out: (Encoder Sequence, B, C) output features from the last layer of the encoder we are
                cross-attending with.
            decoder_pos_embed: (ES, 1, C) positional embedding for keys (from the encoder).
            encoder_pos_embed: (DS, 1, C) Positional_embedding for the queries (from the decoder).
        Returns:
            (DS, B, C) tensor of decoder output features.
        """
        skip = x
        if self.pre_norm:
            x = self.norm1(x)
        q = k = self.maybe_add_pos_embed(x, decoder_pos_embed)
        x = self.self_attn(q, k, value=x)[0]  # select just the output, not the attention weights
        x = skip + self.dropout1(x)
        if self.pre_norm:
            skip = x
            x = self.norm2(x)
        else:
            x = self.norm1(x)
            skip = x
        x = self.multihead_attn(
            query=self.maybe_add_pos_embed(x, decoder_pos_embed),
            key=self.maybe_add_pos_embed(encoder_out, encoder_pos_embed),
            value=encoder_out,
        )[0]  # select just the output, not the attention weights
        x = skip + self.dropout2(x)
        if self.pre_norm:
            skip = x
            x = self.norm3(x)
        else:
            x = self.norm2(x)
            skip = x
        x = self.linear2(self.dropout(self.activation(self.linear1(x))))
        x = skip + self.dropout3(x)
        if not self.pre_norm:
            x = self.norm3(x)
        return x


def create_sinusoidal_pos_embedding(num_positions: int, dimension: int) -> Tensor:
    """1D sinusoidal positional embeddings as in Attention is All You Need.

    Args:
        num_positions: Number of token positions required.
    Returns: (num_positions, dimension) position embeddings (the first dimension is the batch dimension).

    """

    def get_position_angle_vec(position):
        return [position / np.power(10000, 2 * (hid_j // 2) / dimension) for hid_j in range(dimension)]

    sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(num_positions)])
    sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2])  # dim 2i
    sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2])  # dim 2i+1
    return torch.from_numpy(sinusoid_table).float()


class ACTSinusoidalPositionEmbedding2d(nn.Module):
    """2D sinusoidal positional embeddings similar to what's presented in Attention Is All You Need.

    The variation is that the position indices are normalized in [0, 2Ο€] (not quite: the lower bound is 1/H
    for the vertical direction, and 1/W for the horizontal direction.
    """

    def __init__(self, dimension: int):
        """
        Args:
            dimension: The desired dimension of the embeddings.
        """
        super().__init__()
        self.dimension = dimension
        self._two_pi = 2 * math.pi
        self._eps = 1e-6
        # Inverse "common ratio" for the geometric progression in sinusoid frequencies.
        self._temperature = 10000

    def forward(self, x: Tensor) -> Tensor:
        """
        Args:
            x: A (B, C, H, W) batch of 2D feature map to generate the embeddings for.
        Returns:
            A (1, C, H, W) batch of corresponding sinusoidal positional embeddings.
        """
        not_mask = torch.ones_like(x[0, :1])  # (1, H, W)
        # Note: These are like range(1, H+1) and range(1, W+1) respectively, but in most implementations
        # they would be range(0, H) and range(0, W). Keeping it at as is to match the original code.
        y_range = not_mask.cumsum(1, dtype=torch.float32)
        x_range = not_mask.cumsum(2, dtype=torch.float32)

        # "Normalize" the position index such that it ranges in [0, 2Ο€].
        # Note: Adding epsilon on the denominator should not be needed as all values of y_embed and x_range
        # are non-zero by construction. This is an artifact of the original code.
        y_range = y_range / (y_range[:, -1:, :] + self._eps) * self._two_pi
        x_range = x_range / (x_range[:, :, -1:] + self._eps) * self._two_pi

        inverse_frequency = self._temperature ** (
            2 * (torch.arange(self.dimension, dtype=torch.float32, device=x.device) // 2) / self.dimension
        )

        x_range = x_range.unsqueeze(-1) / inverse_frequency  # (1, H, W, 1)
        y_range = y_range.unsqueeze(-1) / inverse_frequency  # (1, H, W, 1)

        # Note: this stack then flatten operation results in interleaved sine and cosine terms.
        # pos_embed_x and pos_embed_y are (1, H, W, C // 2).
        pos_embed_x = torch.stack((x_range[..., 0::2].sin(), x_range[..., 1::2].cos()), dim=-1).flatten(3)
        pos_embed_y = torch.stack((y_range[..., 0::2].sin(), y_range[..., 1::2].cos()), dim=-1).flatten(3)
        pos_embed = torch.cat((pos_embed_y, pos_embed_x), dim=3).permute(0, 3, 1, 2)  # (1, C, H, W)

        return pos_embed


def get_activation_fn(activation: str) -> Callable:
    """Return an activation function given a string."""
    if activation == "relu":
        return F.relu
    if activation == "gelu":
        return F.gelu
    if activation == "glu":
        return F.glu
    raise RuntimeError(f"activation should be relu/gelu/glu, not {activation}.")