|
import gradio as gr |
|
import os |
|
import logging |
|
import json |
|
from huggingface_hub import InferenceClient |
|
from huggingface_hub.utils import HfHubHTTPError |
|
import traceback |
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
HF_TARGET_TOKEN = os.environ.get("HF_API_TOKEN") |
|
if not HF_TARGET_TOKEN: |
|
logger.error("CRITICAL: HF_API_TOKEN secret not found in Space environment variables!") |
|
|
|
|
|
target_client = None |
|
initialization_error = None |
|
try: |
|
|
|
if HF_TARGET_TOKEN: |
|
target_client = InferenceClient(token=HF_TARGET_TOKEN) |
|
logger.info("Target InferenceClient initialized.") |
|
else: |
|
|
|
initialization_error = "Service Unavailable: Proxy configuration error (Missing Token)." |
|
logger.error(initialization_error) |
|
except Exception as e: |
|
initialization_error = f"Failed to initialize target InferenceClient: {e}" |
|
logger.error(initialization_error) |
|
target_client = None |
|
|
|
|
|
def proxy_inference(request_data: dict): |
|
""" |
|
Gradio function to handle inference requests. |
|
Expects a dictionary (from gr.JSON input) like: |
|
{ |
|
"imageDataUrl": "...", |
|
"candidate_labels": ["cat", "dog", "car"] |
|
} |
|
output_example_success = { |
|
"result": [{"score": 0.95, "label": "cat"}, {"score": 0.03, "label": "dog"}, {"score": 0.02, "label": "car"}] |
|
} |
|
output_example_error = { |
|
"error": "Target API Error (Status 422)", |
|
"details": "Input validation error on target server.", |
|
"request_id": "abc-123" |
|
} |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Inference Proxy\nAccepts JSON input with `imageDataUrl` and `candidate_labels`, calls the target zero-shot model, and returns JSON output.") |
|
with gr.Row(): |
|
|
|
input_json = gr.JSON(label="Input Data (JSON)", value=input_example) |
|
output_json = gr.JSON(label="Output Result (JSON)") |
|
|
|
gr.Markdown(f"**Example Success Output:**\n```json\n{json.dumps(output_example_success, indent=2)}\n```") |
|
gr.Markdown(f"**Example Error Output:**\n```json\n{json.dumps(output_example_error, indent=2)}\n```") |
|
|
|
|
|
|
|
|
|
|
|
|
|
submit_btn = gr.Button("Process (for API)", visible=False) |
|
submit_btn.click( |
|
fn=proxy_inference, |
|
inputs=input_json, |
|
outputs=output_json, |
|
api_name="predict" |
|
) |
|
|
|
|
|
|
|
demo.launch(share=False) |