api-proxy / app.py
ford442's picture
Update app.py
0490acd verified
import gradio as gr
import os
import logging
import json # For potentially parsing input if not using gr.JSON, or formatting output
from huggingface_hub import InferenceClient
from huggingface_hub.utils import HfHubHTTPError # Correct import
import traceback
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# --- Hugging Face Client Setup ---
HF_TARGET_TOKEN = os.environ.get("HF_API_TOKEN")
if not HF_TARGET_TOKEN:
logger.error("CRITICAL: HF_API_TOKEN secret not found in Space environment variables!")
# Gradio app might still load, but inference will fail.
target_client = None
initialization_error = None
try:
# Only initialize if token exists
if HF_TARGET_TOKEN:
target_client = InferenceClient(token=HF_TARGET_TOKEN)
logger.info("Target InferenceClient initialized.")
else:
# Allows app to load but indicates the problem
initialization_error = "Service Unavailable: Proxy configuration error (Missing Token)."
logger.error(initialization_error)
except Exception as e:
initialization_error = f"Failed to initialize target InferenceClient: {e}"
logger.error(initialization_error)
target_client = None # Ensure it's None
# --- Core Proxy Function ---
def proxy_inference(request_data: dict):
"""
Gradio function to handle inference requests.
Expects a dictionary (from gr.JSON input) like:
{
"imageDataUrl": "...",
"candidate_labels": ["cat", "dog", "car"]
}
output_example_success = {
"result": [{"score": 0.95, "label": "cat"}, {"score": 0.03, "label": "dog"}, {"score": 0.02, "label": "car"}]
}
output_example_error = {
"error": "Target API Error (Status 422)",
"details": "Input validation error on target server.",
"request_id": "abc-123"
}
with gr.Blocks() as demo:
gr.Markdown("# Inference Proxy\nAccepts JSON input with `imageDataUrl` and `candidate_labels`, calls the target zero-shot model, and returns JSON output.")
with gr.Row():
# Define JSON components for clear API contract
input_json = gr.JSON(label="Input Data (JSON)", value=input_example)
output_json = gr.JSON(label="Output Result (JSON)") # Examples shown in Markdown below
gr.Markdown(f"**Example Success Output:**\n```json\n{json.dumps(output_example_success, indent=2)}\n```")
gr.Markdown(f"**Example Error Output:**\n```json\n{json.dumps(output_example_error, indent=2)}\n```")
# Hidden button to trigger processing - main interaction is via API
# We link the JSON input/output directly to the function
# Gradio Interface or Button click isn't strictly needed if only using API,
# but Interface makes the API endpoint setup automatic.
# Using a dummy button helps ensure the function is linked for the API.
submit_btn = gr.Button("Process (for API)", visible=False)
submit_btn.click(
fn=proxy_inference,
inputs=input_json,
outputs=output_json,
api_name="predict" # Exposes endpoint at /api/predict/
)
# --- Launch the App ---
# share=False is default and recommended for proxy spaces unless public access needed
demo.launch(share=False)