import gradio as gr import os import logging import json # For potentially parsing input if not using gr.JSON, or formatting output from huggingface_hub import InferenceClient from huggingface_hub.utils import HfHubHTTPError # Correct import import traceback # Configure logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # --- Hugging Face Client Setup --- HF_TARGET_TOKEN = os.environ.get("HF_API_TOKEN") if not HF_TARGET_TOKEN: logger.error("CRITICAL: HF_API_TOKEN secret not found in Space environment variables!") # Gradio app might still load, but inference will fail. target_client = None initialization_error = None try: # Only initialize if token exists if HF_TARGET_TOKEN: target_client = InferenceClient(token=HF_TARGET_TOKEN) logger.info("Target InferenceClient initialized.") else: # Allows app to load but indicates the problem initialization_error = "Service Unavailable: Proxy configuration error (Missing Token)." logger.error(initialization_error) except Exception as e: initialization_error = f"Failed to initialize target InferenceClient: {e}" logger.error(initialization_error) target_client = None # Ensure it's None # --- Core Proxy Function --- def proxy_inference(request_data: dict): """ Gradio function to handle inference requests. Expects a dictionary (from gr.JSON input) like: { "imageDataUrl": "...", "candidate_labels": ["cat", "dog", "car"] } output_example_success = { "result": [{"score": 0.95, "label": "cat"}, {"score": 0.03, "label": "dog"}, {"score": 0.02, "label": "car"}] } output_example_error = { "error": "Target API Error (Status 422)", "details": "Input validation error on target server.", "request_id": "abc-123" } with gr.Blocks() as demo: gr.Markdown("# Inference Proxy\nAccepts JSON input with `imageDataUrl` and `candidate_labels`, calls the target zero-shot model, and returns JSON output.") with gr.Row(): # Define JSON components for clear API contract input_json = gr.JSON(label="Input Data (JSON)", value=input_example) output_json = gr.JSON(label="Output Result (JSON)") # Examples shown in Markdown below gr.Markdown(f"**Example Success Output:**\n```json\n{json.dumps(output_example_success, indent=2)}\n```") gr.Markdown(f"**Example Error Output:**\n```json\n{json.dumps(output_example_error, indent=2)}\n```") # Hidden button to trigger processing - main interaction is via API # We link the JSON input/output directly to the function # Gradio Interface or Button click isn't strictly needed if only using API, # but Interface makes the API endpoint setup automatic. # Using a dummy button helps ensure the function is linked for the API. submit_btn = gr.Button("Process (for API)", visible=False) submit_btn.click( fn=proxy_inference, inputs=input_json, outputs=output_json, api_name="predict" # Exposes endpoint at /api/predict/ ) # --- Launch the App --- # share=False is default and recommended for proxy spaces unless public access needed demo.launch(share=False)