File size: 6,750 Bytes
0490acd
5d1e862
 
0490acd
fa235be
0490acd
5d1e862
 
 
 
 
 
 
 
 
 
0490acd
5d1e862
0490acd
 
5d1e862
0490acd
 
 
 
 
 
 
 
5d1e862
0490acd
 
 
5d1e862
0490acd
 
5d1e862
0490acd
 
 
 
 
 
 
 
5d1e862
0490acd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d1e862
0490acd
 
 
 
 
 
 
 
 
 
5d1e862
 
 
0490acd
5d1e862
0490acd
 
5d1e862
 
0490acd
5d1e862
 
 
0490acd
 
5d1e862
0490acd
5d1e862
0490acd
 
 
 
 
 
 
 
 
 
 
5d1e862
0490acd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d1e862
0490acd
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import gradio as gr
import os
import logging
import json # For potentially parsing input if not using gr.JSON, or formatting output
from huggingface_hub import InferenceClient
from huggingface_hub.utils import HfHubHTTPError # Correct import
import traceback

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# --- Hugging Face Client Setup ---
HF_TARGET_TOKEN = os.environ.get("HF_API_TOKEN")
if not HF_TARGET_TOKEN:
    logger.error("CRITICAL: HF_API_TOKEN secret not found in Space environment variables!")
    # Gradio app might still load, but inference will fail.

target_client = None
initialization_error = None
try:
    # Only initialize if token exists
    if HF_TARGET_TOKEN:
        target_client = InferenceClient(token=HF_TARGET_TOKEN)
        logger.info("Target InferenceClient initialized.")
    else:
        # Allows app to load but indicates the problem
        initialization_error = "Service Unavailable: Proxy configuration error (Missing Token)."
        logger.error(initialization_error)
except Exception as e:
    initialization_error = f"Failed to initialize target InferenceClient: {e}"
    logger.error(initialization_error)
    target_client = None # Ensure it's None

# --- Core Proxy Function ---
def proxy_inference(request_data: dict):
    """
    Gradio function to handle inference requests.
    Expects a dictionary (from gr.JSON input) like:
    {
        "imageDataUrl": "...",
    "candidate_labels": ["cat", "dog", "car"]
}
output_example_success = {
    "result": [{"score": 0.95, "label": "cat"}, {"score": 0.03, "label": "dog"}, {"score": 0.02, "label": "car"}]
}
output_example_error = {
    "error": "Target API Error (Status 422)",
    "details": "Input validation error on target server.",
    "request_id": "abc-123"
}


with gr.Blocks() as demo:
    gr.Markdown("# Inference Proxy\nAccepts JSON input with `imageDataUrl` and `candidate_labels`, calls the target zero-shot model, and returns JSON output.")
    with gr.Row():
         # Define JSON components for clear API contract
         input_json = gr.JSON(label="Input Data (JSON)", value=input_example)
         output_json = gr.JSON(label="Output Result (JSON)") # Examples shown in Markdown below

    gr.Markdown(f"**Example Success Output:**\n```json\n{json.dumps(output_example_success, indent=2)}\n```")
    gr.Markdown(f"**Example Error Output:**\n```json\n{json.dumps(output_example_error, indent=2)}\n```")

    # Hidden button to trigger processing - main interaction is via API
    # We link the JSON input/output directly to the function
    # Gradio Interface or Button click isn't strictly needed if only using API,
    # but Interface makes the API endpoint setup automatic.
    # Using a dummy button helps ensure the function is linked for the API.
    submit_btn = gr.Button("Process (for API)", visible=False)
    submit_btn.click(
         fn=proxy_inference,
         inputs=input_json,
         outputs=output_json,
         api_name="predict" # Exposes endpoint at /api/predict/
    )

# --- Launch the App ---
# share=False is default and recommended for proxy spaces unless public access needed
demo.launch(share=False)