File size: 9,080 Bytes
57abc33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import torch
import torch.nn as nn
import torch.nn.functional as F
from segment_anything.modeling import TwoWayTransformer, MaskDecoder
from typing import Dict, List, Tuple

class LayerNorm2d(nn.Module):
    def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
        super().__init__()
        self.weight = nn.Parameter(torch.ones(num_channels))
        self.bias = nn.Parameter(torch.zeros(num_channels))
        self.eps = eps

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        u = x.mean(1, keepdim=True)
        s = (x - u).pow(2).mean(1, keepdim=True)
        x = (x - u) / torch.sqrt(s + self.eps)
        x = self.weight[:, None, None] * x + self.bias[:, None, None]
        return x

class MLP(nn.Module):
    def __init__(
        self,
        input_dim: int,
        hidden_dim: int,
        output_dim: int,
        num_layers: int,
        sigmoid_output: bool = False,
    ) -> None:
        super().__init__()
        self.num_layers = num_layers
        h = [hidden_dim] * (num_layers - 1)
        self.layers = nn.ModuleList(
            nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])
        )
        self.sigmoid_output = sigmoid_output

    def forward(self, x):
        for i, layer in enumerate(self.layers):
            x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
        if self.sigmoid_output:
            x = F.sigmoid(x)
        return x

class MaskDecoderHQ(MaskDecoder):
    def __init__(self, model_type):
        super().__init__(transformer_dim=256,
                        transformer=TwoWayTransformer(
                                depth=2,
                                embedding_dim=256,
                                mlp_dim=2048,
                                num_heads=8,
                            ),
                        num_multimask_outputs=3,
                        activation=nn.GELU,
                        iou_head_depth= 3,
                        iou_head_hidden_dim= 256,)
        assert model_type in ["vit_b","vit_l","vit_h"]
        
        checkpoint_dict = {"vit_b":"pretrained_checkpoint/sam_vit_b_maskdecoder.pth",
                           "vit_l":"pretrained_checkpoint/sam_vit_l_maskdecoder.pth",
                           'vit_h':"pretrained_checkpoint/sam_vit_h_maskdecoder.pth"}
        checkpoint_path = checkpoint_dict[model_type]
        self.load_state_dict(torch.load(checkpoint_path))
        print("HQ Decoder init from SAM MaskDecoder")
        for n,p in self.named_parameters():
            p.requires_grad = False

        transformer_dim=256
        vit_dim_dict = {"vit_b":768,"vit_l":1024,"vit_h":1280}
        vit_dim = vit_dim_dict[model_type]

        self.hf_token = nn.Embedding(1, transformer_dim)
        self.hf_mlp = MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3)
        self.num_mask_tokens = self.num_mask_tokens + 1

        self.compress_vit_feat = nn.Sequential(
                                        nn.ConvTranspose2d(vit_dim, transformer_dim, kernel_size=2, stride=2),
                                        LayerNorm2d(transformer_dim),
                                        nn.GELU(), 
                                        nn.ConvTranspose2d(transformer_dim, transformer_dim // 8, kernel_size=2, stride=2))
        
        self.embedding_encoder = nn.Sequential(
                                        nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
                                        LayerNorm2d(transformer_dim // 4),
                                        nn.GELU(),
                                        nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
                                    )

        self.embedding_maskfeature = nn.Sequential(
                                        nn.Conv2d(transformer_dim // 8, transformer_dim // 4, 3, 1, 1), 
                                        LayerNorm2d(transformer_dim // 4),
                                        nn.GELU(),
                                        nn.Conv2d(transformer_dim // 4, transformer_dim // 8, 3, 1, 1))
        
        
    def forward(
        self,
        image_embeddings: torch.Tensor,
        image_pe: torch.Tensor,
        sparse_prompt_embeddings: torch.Tensor,
        dense_prompt_embeddings: torch.Tensor,
        multimask_output: bool,
        hq_token_only: bool,
        interm_embeddings: torch.Tensor,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        Predict masks given image and prompt embeddings.

        Arguments:
          image_embeddings (torch.Tensor): the embeddings from the ViT image encoder
          image_pe (torch.Tensor): positional encoding with the shape of image_embeddings
          sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes
          dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs
          multimask_output (bool): Whether to return multiple masks or a single
            mask.

        Returns:
          torch.Tensor: batched predicted hq masks
        """
        
        vit_features = interm_embeddings[0].permute(0, 3, 1, 2) # early-layer ViT feature, after 1st global attention block in ViT
        hq_features = self.embedding_encoder(image_embeddings) + self.compress_vit_feat(vit_features)

        batch_len = len(image_embeddings)
        masks = []
        iou_preds = []
        for i_batch in range(batch_len):
            mask, iou_pred = self.predict_masks(
                image_embeddings=image_embeddings[i_batch].unsqueeze(0),
                image_pe=image_pe[i_batch],
                sparse_prompt_embeddings=sparse_prompt_embeddings[i_batch],
                dense_prompt_embeddings=dense_prompt_embeddings[i_batch],
                hq_feature = hq_features[i_batch].unsqueeze(0)
            )
            masks.append(mask)
            iou_preds.append(iou_pred)
        masks = torch.cat(masks,0)
        iou_preds = torch.cat(iou_preds,0)

        # Select the correct mask or masks for output
        if multimask_output:
            # mask with highest score
            mask_slice = slice(1,self.num_mask_tokens-1)
            iou_preds = iou_preds[:, mask_slice]
            iou_preds, max_iou_idx = torch.max(iou_preds,dim=1)
            iou_preds = iou_preds.unsqueeze(1)
            masks_multi = masks[:, mask_slice, :, :]
            masks_sam = masks_multi[torch.arange(masks_multi.size(0)),max_iou_idx].unsqueeze(1)
        else:
            # singale mask output, default
            mask_slice = slice(0, 1)
            masks_sam = masks[:,mask_slice]

        masks_hq = masks[:,slice(self.num_mask_tokens-1, self.num_mask_tokens), :, :]
        
        if hq_token_only:
            return masks_hq
        else:
            return masks_sam, masks_hq

    def predict_masks(
        self,
        image_embeddings: torch.Tensor,
        image_pe: torch.Tensor,
        sparse_prompt_embeddings: torch.Tensor,
        dense_prompt_embeddings: torch.Tensor,
        hq_feature: torch.Tensor,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """Predicts masks. See 'forward' for more details."""

        output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight, self.hf_token.weight], dim=0)
        output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1)
        tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)

        # Expand per-image data in batch direction to be per-mask
        src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0) 
        src = src + dense_prompt_embeddings
        pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
        b, c, h, w = src.shape

        # Run the transformer
        hs, src = self.transformer(src, pos_src, tokens)
        iou_token_out = hs[:, 0, :]
        mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :]

        # Upscale mask embeddings and predict masks using the mask tokens
        src = src.transpose(1, 2).view(b, c, h, w)

        upscaled_embedding_sam = self.output_upscaling(src)
        upscaled_embedding_ours = self.embedding_maskfeature(upscaled_embedding_sam) + hq_feature
        
        hyper_in_list: List[torch.Tensor] = []
        for i in range(self.num_mask_tokens):
            if i < 4:
                hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]))
            else:
                hyper_in_list.append(self.hf_mlp(mask_tokens_out[:, i, :]))

        hyper_in = torch.stack(hyper_in_list, dim=1)
        b, c, h, w = upscaled_embedding_sam.shape

        masks_sam = (hyper_in[:,:4] @ upscaled_embedding_sam.view(b, c, h * w)).view(b, -1, h, w)
        masks_ours = (hyper_in[:,4:] @ upscaled_embedding_ours.view(b, c, h * w)).view(b, -1, h, w)

        masks = torch.cat([masks_sam,masks_ours],dim=1)
        
        iou_pred = self.iou_prediction_head(iou_token_out)

        return masks, iou_pred