Spaces:
Runtime error
Runtime error
File size: 7,044 Bytes
1ff2d47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
import torch
import torch.nn as nn
import numpy as np
import scipy.io as sio
import torch.nn.functional as F
class RCF(nn.Module):
def __init__(self, pretrained=None):
super(RCF, self).__init__()
self.conv1_1 = nn.Conv2d( 3, 64, 3, padding=1, dilation=1)
self.conv1_2 = nn.Conv2d( 64, 64, 3, padding=1, dilation=1)
self.conv2_1 = nn.Conv2d( 64, 128, 3, padding=1, dilation=1)
self.conv2_2 = nn.Conv2d(128, 128, 3, padding=1, dilation=1)
self.conv3_1 = nn.Conv2d(128, 256, 3, padding=1, dilation=1)
self.conv3_2 = nn.Conv2d(256, 256, 3, padding=1, dilation=1)
self.conv3_3 = nn.Conv2d(256, 256, 3, padding=1, dilation=1)
self.conv4_1 = nn.Conv2d(256, 512, 3, padding=1, dilation=1)
self.conv4_2 = nn.Conv2d(512, 512, 3, padding=1, dilation=1)
self.conv4_3 = nn.Conv2d(512, 512, 3, padding=1, dilation=1)
self.conv5_1 = nn.Conv2d(512, 512, 3, padding=2, dilation=2)
self.conv5_2 = nn.Conv2d(512, 512, 3, padding=2, dilation=2)
self.conv5_3 = nn.Conv2d(512, 512, 3, padding=2, dilation=2)
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
self.pool4 = nn.MaxPool2d(2, stride=1, ceil_mode=True)
self.act = nn.ReLU(inplace=True)
self.conv1_1_down = nn.Conv2d( 64, 21, 1)
self.conv1_2_down = nn.Conv2d( 64, 21, 1)
self.conv2_1_down = nn.Conv2d(128, 21, 1)
self.conv2_2_down = nn.Conv2d(128, 21, 1)
self.conv3_1_down = nn.Conv2d(256, 21, 1)
self.conv3_2_down = nn.Conv2d(256, 21, 1)
self.conv3_3_down = nn.Conv2d(256, 21, 1)
self.conv4_1_down = nn.Conv2d(512, 21, 1)
self.conv4_2_down = nn.Conv2d(512, 21, 1)
self.conv4_3_down = nn.Conv2d(512, 21, 1)
self.conv5_1_down = nn.Conv2d(512, 21, 1)
self.conv5_2_down = nn.Conv2d(512, 21, 1)
self.conv5_3_down = nn.Conv2d(512, 21, 1)
self.score_dsn1 = nn.Conv2d(21, 1, 1)
self.score_dsn2 = nn.Conv2d(21, 1, 1)
self.score_dsn3 = nn.Conv2d(21, 1, 1)
self.score_dsn4 = nn.Conv2d(21, 1, 1)
self.score_dsn5 = nn.Conv2d(21, 1, 1)
self.score_fuse = nn.Conv2d(5, 1, 1)
self.weight_deconv2 = self._make_bilinear_weights( 4, 1).cuda()
self.weight_deconv3 = self._make_bilinear_weights( 8, 1).cuda()
self.weight_deconv4 = self._make_bilinear_weights(16, 1).cuda()
self.weight_deconv5 = self._make_bilinear_weights(16, 1).cuda()
# init weights
self.apply(self._init_weights)
if pretrained is not None:
vgg16 = sio.loadmat(pretrained)
torch_params = self.state_dict()
for k in vgg16.keys():
name_par = k.split('-')
size = len(name_par)
if size == 2:
name_space = name_par[0] + '.' + name_par[1]
data = np.squeeze(vgg16[k])
torch_params[name_space] = torch.from_numpy(data)
self.load_state_dict(torch_params)
def _init_weights(self, m):
if isinstance(m, nn.Conv2d):
m.weight.data.normal_(0, 0.01)
if m.weight.data.shape == torch.Size([1, 5, 1, 1]):
nn.init.constant_(m.weight, 0.2)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
# Based on HED implementation @ https://github.com/xwjabc/hed
def _make_bilinear_weights(self, size, num_channels):
factor = (size + 1) // 2
if size % 2 == 1:
center = factor - 1
else:
center = factor - 0.5
og = np.ogrid[:size, :size]
filt = (1 - abs(og[0] - center) / factor) * (1 - abs(og[1] - center) / factor)
filt = torch.from_numpy(filt)
w = torch.zeros(num_channels, num_channels, size, size)
w.requires_grad = False
for i in range(num_channels):
for j in range(num_channels):
if i == j:
w[i, j] = filt
return w
# Based on BDCN implementation @ https://github.com/pkuCactus/BDCN
def _crop(self, data, img_h, img_w, crop_h, crop_w):
_, _, h, w = data.size()
assert(img_h <= h and img_w <= w)
data = data[:, :, crop_h:crop_h + img_h, crop_w:crop_w + img_w]
return data
def forward(self, x):
img_h, img_w = x.shape[2], x.shape[3]
conv1_1 = self.act(self.conv1_1(x))
conv1_2 = self.act(self.conv1_2(conv1_1))
pool1 = self.pool1(conv1_2)
conv2_1 = self.act(self.conv2_1(pool1))
conv2_2 = self.act(self.conv2_2(conv2_1))
pool2 = self.pool2(conv2_2)
conv3_1 = self.act(self.conv3_1(pool2))
conv3_2 = self.act(self.conv3_2(conv3_1))
conv3_3 = self.act(self.conv3_3(conv3_2))
pool3 = self.pool3(conv3_3)
conv4_1 = self.act(self.conv4_1(pool3))
conv4_2 = self.act(self.conv4_2(conv4_1))
conv4_3 = self.act(self.conv4_3(conv4_2))
pool4 = self.pool4(conv4_3)
conv5_1 = self.act(self.conv5_1(pool4))
conv5_2 = self.act(self.conv5_2(conv5_1))
conv5_3 = self.act(self.conv5_3(conv5_2))
conv1_1_down = self.conv1_1_down(conv1_1)
conv1_2_down = self.conv1_2_down(conv1_2)
conv2_1_down = self.conv2_1_down(conv2_1)
conv2_2_down = self.conv2_2_down(conv2_2)
conv3_1_down = self.conv3_1_down(conv3_1)
conv3_2_down = self.conv3_2_down(conv3_2)
conv3_3_down = self.conv3_3_down(conv3_3)
conv4_1_down = self.conv4_1_down(conv4_1)
conv4_2_down = self.conv4_2_down(conv4_2)
conv4_3_down = self.conv4_3_down(conv4_3)
conv5_1_down = self.conv5_1_down(conv5_1)
conv5_2_down = self.conv5_2_down(conv5_2)
conv5_3_down = self.conv5_3_down(conv5_3)
out1 = self.score_dsn1(conv1_1_down + conv1_2_down)
out2 = self.score_dsn2(conv2_1_down + conv2_2_down)
out3 = self.score_dsn3(conv3_1_down + conv3_2_down + conv3_3_down)
out4 = self.score_dsn4(conv4_1_down + conv4_2_down + conv4_3_down)
out5 = self.score_dsn5(conv5_1_down + conv5_2_down + conv5_3_down)
out2 = F.conv_transpose2d(out2, self.weight_deconv2, stride=2)
out3 = F.conv_transpose2d(out3, self.weight_deconv3, stride=4)
out4 = F.conv_transpose2d(out4, self.weight_deconv4, stride=8)
out5 = F.conv_transpose2d(out5, self.weight_deconv5, stride=8)
out2 = self._crop(out2, img_h, img_w, 1, 1)
out3 = self._crop(out3, img_h, img_w, 2, 2)
out4 = self._crop(out4, img_h, img_w, 4, 4)
out5 = self._crop(out5, img_h, img_w, 0, 0)
fuse = torch.cat((out1, out2, out3, out4, out5), dim=1)
fuse = self.score_fuse(fuse)
results = [out1, out2, out3, out4, out5, fuse]
results = [torch.sigmoid(r) for r in results]
return results
|