Spaces:
Sleeping
Sleeping
File size: 12,734 Bytes
be5548b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
import numpy as np
from gym_minigrid.minigrid import *
from gym_minigrid.register import register
import time
from collections import deque
class Peer(NPC):
"""
A dancing NPC that the agent has to copy
"""
def __init__(self, color, name, env, knowledgeable=False):
super().__init__(color)
self.name = name
self.npc_dir = 1 # NPC initially looks downward
self.npc_type = 0
self.env = env
self.knowledgeable = knowledgeable
self.npc_actions = []
self.dancing_step_idx = 0
self.actions = MiniGridEnv.Actions
self.add_npc_direction = True
self.available_moves = [self.rotate_left, self.rotate_right, self.go_forward, self.toggle_action]
self.exited = False
def step(self):
if self.exited:
return
if all(np.array(self.cur_pos) == np.array(self.env.door_pos)):
# disappear
self.env.grid.set(*self.cur_pos, self.env.object)
self.cur_pos = np.array([np.nan, np.nan])
# close door
self.env.object.toggle(self.env, self.cur_pos)
# reset switches door
for s in self.env.switches:
s.is_on = False
# update door
self.env.update_door_lock()
self.exited = True
elif self.knowledgeable:
if self.env.object.is_locked:
first_wrong_id = np.where(self.env.get_selected_password() != self.env.password)[0][0]
print("first_wrong_id:", first_wrong_id)
goal_pos = self.env.switches_pos[first_wrong_id]
act = self.path_to_toggle_pos(goal_pos)
act()
else:
if all(self.front_pos == self.env.door_pos) and self.env.object.is_open:
self.go_forward()
else:
act = self.path_to_toggle_pos(self.env.door_pos)
act()
else:
self.env._rand_elem(self.available_moves)()
self.env.update_door_lock()
class SpyingGrammar(object):
templates = ["Move your", "Shake your"]
things = ["body", "head"]
grammar_action_space = spaces.MultiDiscrete([len(templates), len(things)])
@classmethod
def construct_utterance(cls, action):
return cls.templates[int(action[0])] + " " + cls.things[int(action[1])] + " "
class SpyingEnv(MultiModalMiniGridEnv):
"""
Environment in which the agent is instructed to go to a given object
named using an English text string
"""
def __init__(
self,
size=5,
diminished_reward=True,
step_penalty=False,
knowledgeable=False,
hard_password=False,
max_steps=None,
n_switches=3
):
assert size >= 5
self.empty_symbol = "NA \n"
self.diminished_reward = diminished_reward
self.step_penalty = step_penalty
self.knowledgeable = knowledgeable
self.hard_password = hard_password
self.n_switches = n_switches
super().__init__(
grid_size=size,
max_steps=max_steps or 5*size**2,
# Set this to True for maximum speed
see_through_walls=True,
actions=MiniGridEnv.Actions,
action_space=spaces.MultiDiscrete([
len(MiniGridEnv.Actions),
*SpyingGrammar.grammar_action_space.nvec
]),
add_npc_direction=True
)
print({
"size": size,
"diminished_reward": diminished_reward,
"step_penalty": step_penalty,
})
def get_selected_password(self):
return np.array([int(s.is_on) for s in self.switches])
def _gen_grid(self, width, height):
# Create the grid
self.grid = Grid(width, height, nb_obj_dims=4)
# Randomly vary the room width and height
width = self._rand_int(5, width+1)
height = self._rand_int(5, height+1)
self.wall_x = width - 1
self.wall_y = height - 1
# Generate the surrounding walls
self.grid.wall_rect(0, 0, width, height)
door_color = self._rand_elem(COLOR_NAMES)
wall_for_door = self._rand_int(1, 4)
if wall_for_door < 2:
w = self._rand_int(1, width-1)
h = height-1 if wall_for_door == 0 else 0
else:
w = width-1 if wall_for_door == 3 else 0
h = self._rand_int(1, height-1)
assert h != height-1 # door mustn't be on the bottom wall
self.door_pos = (w, h)
self.door = Door(door_color, is_locked=True)
self.grid.set(*self.door_pos, self.door)
# add the switches
self.switches = []
self.switches_pos = []
for i in range(self.n_switches):
c = COLOR_NAMES[i]
pos = np.array([i+1, height-1])
sw = Switch(c)
self.grid.set(*pos, sw)
self.switches.append(sw)
self.switches_pos.append(pos)
# sample password
if self.hard_password:
self.password = np.array([self._rand_int(0, 2) for _ in range(self.n_switches)])
else:
idx = self._rand_int(0, self.n_switches)
self.password = np.zeros(self.n_switches)
self.password[idx] = 1.0
# Set a randomly coloured Dancer NPC
color = self._rand_elem(COLOR_NAMES)
self.peer = Peer(color, "Jim", self, knowledgeable=self.knowledgeable)
# Place it on the middle left side of the room
peer_pos = np.array((self._rand_int(1, width - 1), self._rand_int(1, height - 1)))
self.grid.set(*peer_pos, self.peer)
self.peer.init_pos = peer_pos
self.peer.cur_pos = peer_pos
# Randomize the agent's start position and orientation
self.place_agent(size=(width, height))
# Generate the mission string
self.mission = 'exit the room'
# Dummy beginning string
self.beginning_string = "This is what you hear. \n"
self.utterance = self.beginning_string
# utterance appended at the end of each step
self.utterance_history = ""
# used for rendering
self.conversation = self.utterance
def update_door_lock(self):
if np.array_equal(self.get_selected_password(), self.password):
self.door.is_locked = False
else:
self.door.is_locked = True
self.door.is_open = False
def step(self, action):
p_action = action[0]
utterance_action = action[1:]
obs, reward, done, info = super().step(p_action)
self.update_door_lock()
print("pass:", self.password)
if p_action == self.actions.done:
done = True
self.peer.step()
if all(self.agent_pos == self.door_pos):
done = True
if self.peer.exited:
# only give reward of both exited
reward = self._reward()
# discount
if self.step_penalty:
reward = reward - 0.01
# fill observation with text
self.append_existing_utterance_to_history()
obs = self.add_utterance_to_observation(obs)
self.reset_utterance()
return obs, reward, done, info
def _reward(self):
if self.diminished_reward:
return super()._reward()
else:
return 1.0
def render(self, *args, **kwargs):
obs = super().render(*args, **kwargs)
print("conversation:\n", self.conversation)
print("utterance_history:\n", self.utterance_history)
self.window.set_caption(self.conversation, [self.peer.name])
return obs
class Spying8x8Env(SpyingEnv):
def __init__(self):
super().__init__(size=8)
class Spying6x6Env(SpyingEnv):
def __init__(self):
super().__init__(size=6)
# knowledgeable
class SpyingKnowledgeableEnv(SpyingEnv):
def __init__(self):
super().__init__(size=5, knowledgeable=True)
class SpyingKnowledgeable6x6Env(SpyingEnv):
def __init__(self):
super().__init__(size=6, knowledgeable=True)
class SpyingKnowledgeable8x8Env(SpyingEnv):
def __init__(self):
super().__init__(size=8, knowledgeable=True)
class SpyingKnowledgeableHardPassword8x8Env(SpyingEnv):
def __init__(self):
super().__init__(size=8, knowledgeable=True, hard_password=True)
class Spying508x8Env(SpyingEnv):
def __init__(self):
super().__init__(size=8, max_steps=50)
class SpyingKnowledgeable508x8Env(SpyingEnv):
def __init__(self):
super().__init__(size=8, knowledgeable=True, max_steps=50)
class SpyingKnowledgeableHardPassword508x8Env(SpyingEnv):
def __init__(self):
super().__init__(size=8, knowledgeable=True, hard_password=True, max_steps=50)
class SpyingKnowledgeable1008x8Env(SpyingEnv):
def __init__(self):
super().__init__(size=8, knowledgeable=True, max_steps=100)
class SpyingKnowledgeable100OneSwitch8x8Env(SpyingEnv):
def __init__(self):
super().__init__(size=8, knowledgeable=True, max_steps=100, n_switches=1)
class SpyingKnowledgeable50OneSwitch5x5Env(SpyingEnv):
def __init__(self):
super().__init__(size=5, knowledgeable=True, max_steps=50, n_switches=1)
class SpyingKnowledgeable505x5Env(SpyingEnv):
def __init__(self):
super().__init__(size=5, knowledgeable=True, max_steps=50, n_switches=3)
class SpyingKnowledgeable50TwoSwitches8x8Env(SpyingEnv):
def __init__(self):
super().__init__(size=8, knowledgeable=True, max_steps=50, n_switches=2)
class SpyingKnowledgeable50TwoSwitchesHard8x8Env(SpyingEnv):
def __init__(self):
super().__init__(size=8, knowledgeable=True, max_steps=50, n_switches=2, hard_password=True)
class SpyingKnowledgeable100TwoSwitches8x8Env(SpyingEnv):
def __init__(self):
super().__init__(size=8, knowledgeable=True, max_steps=100, n_switches=2)
class SpyingKnowledgeable100TwoSwitchesHard8x8Env(SpyingEnv):
def __init__(self):
super().__init__(size=8, knowledgeable=True, max_steps=100, n_switches=2, hard_password=True)
register(
id='MiniGrid-Spying-5x5-v0',
entry_point='gym_minigrid.envs:SpyingEnv'
)
register(
id='MiniGrid-Spying-6x6-v0',
entry_point='gym_minigrid.envs:Spying6x6Env'
)
register(
id='MiniGrid-Spying-8x8-v0',
entry_point='gym_minigrid.envs:Spying8x8Env'
)
register(
id='MiniGrid-SpyingKnowledgeable-5x5-v0',
entry_point='gym_minigrid.envs:SpyingKnowledgeableEnv'
)
register(
id='MiniGrid-SpyingKnowledgeable-6x6-v0',
entry_point='gym_minigrid.envs:SpyingKnowledgeable6x6Env'
)
register(
id='MiniGrid-SpyingKnowledgeable-8x8-v0',
entry_point='gym_minigrid.envs:SpyingKnowledgeable8x8Env'
)
register(
id='MiniGrid-SpyingKnowledgeableHardPassword-8x8-v0',
entry_point='gym_minigrid.envs:SpyingKnowledgeableHardPassword8x8Env'
)
# max len 50
register(
id='MiniGrid-Spying50-8x8-v0',
entry_point='gym_minigrid.envs:Spying508x8Env'
)
register(
id='MiniGrid-SpyingKnowledgeable50-8x8-v0',
entry_point='gym_minigrid.envs:SpyingKnowledgeable508x8Env'
)
register(
id='MiniGrid-SpyingKnowledgeableHardPassword50-8x8-v0',
entry_point='gym_minigrid.envs:SpyingKnowledgeableHardPassword508x8Env'
)
# max len 100
register(
id='MiniGrid-SpyingKnowledgeable100-8x8-v0',
entry_point='gym_minigrid.envs:SpyingKnowledgeable1008x8Env'
)
# max len OneSwitch
register(
id='MiniGrid-SpyingKnowledgeable100OneSwitch-8x8-v0',
entry_point='gym_minigrid.envs:SpyingKnowledgeable100OneSwitch8x8Env'
)
register(
id='MiniGrid-SpyingKnowledgeable50OneSwitch-5x5-v0',
entry_point='gym_minigrid.envs:SpyingKnowledgeable50OneSwitch5x5Env'
)
register(
id='MiniGrid-SpyingUnknowledgeable50OneSwitch-5x5-v0',
entry_point='gym_minigrid.envs:SpyingUnknowledgeable50OneSwitch5x5Env'
)
register(
id='MiniGrid-SpyingKnowledgeable50-5x5-v0',
entry_point='gym_minigrid.envs:SpyingKnowledgeable505x5Env'
)
register(
id='MiniGrid-SpyingKnowledgeable50TwoSwitches-8x8-v0',
entry_point='gym_minigrid.envs:SpyingKnowledgeable50TwoSwitches8x8Env'
)
register(
id='MiniGrid-SpyingKnowledgeable50TwoSwitchesHard-8x8-v0',
entry_point='gym_minigrid.envs:SpyingKnowledgeable50TwoSwitchesHard8x8Env'
)
register(
id='MiniGrid-SpyingKnowledgeable100TwoSwitches-8x8-v0',
entry_point='gym_minigrid.envs:SpyingKnowledgeable100TwoSwitches8x8Env'
)
register(
id='MiniGrid-SpyingKnowledgeable100TwoSwitchesHard-8x8-v0',
entry_point='gym_minigrid.envs:SpyingKnowledgeable100TwoSwitchesHard8x8Env'
)
|