Spaces:
Sleeping
Sleeping
File size: 4,628 Bytes
be5548b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.distributions.categorical import Categorical
import torch_ac
from utils.other import init_params
class ACModel(nn.Module, torch_ac.RecurrentACModel):
def __init__(self, obs_space, action_space, use_memory=False, use_text=False, use_dialogue=False, input_size=3):
super().__init__()
# store config
self.config = locals()
# Decide which components are enabled
self.use_text = use_text
self.use_memory = use_memory
self.env_action_space = action_space
self.model_raw_action_space = action_space
self.input_size = input_size
if use_dialogue:
raise NotImplementedError("This model does not support dialogue inputs yet")
# Define image embedding
self.image_conv = nn.Sequential(
nn.Conv2d(self.input_size, 16, (2, 2)),
nn.ReLU(),
nn.MaxPool2d((2, 2)),
nn.Conv2d(16, 32, (2, 2)),
nn.ReLU(),
nn.Conv2d(32, 64, (2, 2)),
nn.ReLU()
)
n = obs_space["image"][0]
m = obs_space["image"][1]
self.image_embedding_size = ((n-1)//2-2)*((m-1)//2-2)*64
# Define memory
if self.use_memory:
self.memory_rnn = nn.LSTMCell(self.image_embedding_size, self.semi_memory_size)
# Define text embedding
if self.use_text:
self.word_embedding_size = 32
self.word_embedding = nn.Embedding(obs_space["text"], self.word_embedding_size)
self.text_embedding_size = 128
self.text_rnn = nn.GRU(self.word_embedding_size, self.text_embedding_size, batch_first=True)
# Resize image embedding
self.embedding_size = self.semi_memory_size
if self.use_text:
self.embedding_size += self.text_embedding_size
# Define actor's model
self.actor = nn.Sequential(
nn.Linear(self.embedding_size, 64),
nn.Tanh(),
nn.Linear(64, action_space.nvec[0])
)
# Define critic's model
self.critic = nn.Sequential(
nn.Linear(self.embedding_size, 64),
nn.Tanh(),
nn.Linear(64, 1)
)
# Initialize parameters correctly
self.apply(init_params)
@property
def memory_size(self):
return 2*self.semi_memory_size
@property
def semi_memory_size(self):
return self.image_embedding_size
def forward(self, obs, memory, return_embeddings=False):
x = obs.image.transpose(1, 3).transpose(2, 3)
x = self.image_conv(x)
x = x.reshape(x.shape[0], -1)
if self.use_memory:
hidden = (memory[:, :self.semi_memory_size], memory[:, self.semi_memory_size:])
hidden = self.memory_rnn(x, hidden)
embedding = hidden[0]
memory = torch.cat(hidden, dim=1)
else:
embedding = x
if self.use_text:
embed_text = self._get_embed_text(obs.text)
embedding = torch.cat((embedding, embed_text), dim=1)
x = self.actor(embedding)
dist = Categorical(logits=F.log_softmax(x, dim=1))
x = self.critic(embedding)
value = x.squeeze(1)
if return_embeddings:
return [dist], value, memory, None
else:
return [dist], value, memory
# def sample_action(self, dist):
# return dist.sample()
#
# def calculate_log_probs(self, dist, action):
# return dist.log_prob(action)
def calculate_action_gradient_masks(self, action):
"""Always train"""
mask = torch.ones_like(action).detach()
assert action.shape == mask.shape
return mask
def sample_action(self, dist):
return torch.stack([d.sample() for d in dist], dim=1)
def calculate_log_probs(self, dist, action):
return torch.stack([d.log_prob(action[:, i]) for i, d in enumerate(dist)], dim=1)
def calculate_action_masks(self, action):
mask = torch.ones_like(action)
assert action.shape == mask.shape
return mask
def construct_final_action(self, action):
return action
def _get_embed_text(self, text):
_, hidden = self.text_rnn(self.word_embedding(text))
return hidden[-1]
def get_config_dict(self):
del self.config['__class__']
self.config['self'] = str(self.config['self'])
self.config['action_space'] = self.config['action_space'].nvec.tolist()
return self.config
|