File size: 4,628 Bytes
be5548b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.distributions.categorical import Categorical
import torch_ac
from utils.other import init_params

class ACModel(nn.Module, torch_ac.RecurrentACModel):
    def __init__(self, obs_space, action_space, use_memory=False, use_text=False, use_dialogue=False, input_size=3):
        super().__init__()

        # store config
        self.config = locals()

        # Decide which components are enabled
        self.use_text = use_text
        self.use_memory = use_memory
        self.env_action_space = action_space
        self.model_raw_action_space = action_space
        self.input_size = input_size

        if use_dialogue:
            raise NotImplementedError("This model does not support dialogue inputs yet")

        # Define image embedding
        self.image_conv = nn.Sequential(
            nn.Conv2d(self.input_size, 16, (2, 2)),
            nn.ReLU(),
            nn.MaxPool2d((2, 2)),
            nn.Conv2d(16, 32, (2, 2)),
            nn.ReLU(),
            nn.Conv2d(32, 64, (2, 2)),
            nn.ReLU()
        )
        n = obs_space["image"][0]
        m = obs_space["image"][1]
        self.image_embedding_size = ((n-1)//2-2)*((m-1)//2-2)*64

        # Define memory
        if self.use_memory:
            self.memory_rnn = nn.LSTMCell(self.image_embedding_size, self.semi_memory_size)

        # Define text embedding
        if self.use_text:
            self.word_embedding_size = 32
            self.word_embedding = nn.Embedding(obs_space["text"], self.word_embedding_size)
            self.text_embedding_size = 128
            self.text_rnn = nn.GRU(self.word_embedding_size, self.text_embedding_size, batch_first=True)

        # Resize image embedding
        self.embedding_size = self.semi_memory_size
        if self.use_text:
            self.embedding_size += self.text_embedding_size

        # Define actor's model
        self.actor = nn.Sequential(
            nn.Linear(self.embedding_size, 64),
            nn.Tanh(),
            nn.Linear(64, action_space.nvec[0])
        )

        # Define critic's model
        self.critic = nn.Sequential(
            nn.Linear(self.embedding_size, 64),
            nn.Tanh(),
            nn.Linear(64, 1)
        )

        # Initialize parameters correctly
        self.apply(init_params)

    @property
    def memory_size(self):
        return 2*self.semi_memory_size

    @property
    def semi_memory_size(self):
        return self.image_embedding_size

    def forward(self, obs, memory, return_embeddings=False):
        x = obs.image.transpose(1, 3).transpose(2, 3)
        x = self.image_conv(x)
        x = x.reshape(x.shape[0], -1)

        if self.use_memory:
            hidden = (memory[:, :self.semi_memory_size], memory[:, self.semi_memory_size:])
            hidden = self.memory_rnn(x, hidden)
            embedding = hidden[0]
            memory = torch.cat(hidden, dim=1)
        else:
            embedding = x

        if self.use_text:
            embed_text = self._get_embed_text(obs.text)
            embedding = torch.cat((embedding, embed_text), dim=1)

        x = self.actor(embedding)
        dist = Categorical(logits=F.log_softmax(x, dim=1))

        x = self.critic(embedding)
        value = x.squeeze(1)

        if return_embeddings:
            return [dist], value, memory, None
        else:
            return [dist], value, memory

    # def sample_action(self, dist):
    #     return dist.sample()
    #
    # def calculate_log_probs(self, dist, action):
    #     return dist.log_prob(action)

    def calculate_action_gradient_masks(self, action):
        """Always train"""
        mask = torch.ones_like(action).detach()
        assert action.shape == mask.shape

        return mask

    def sample_action(self, dist):
        return torch.stack([d.sample() for d in dist], dim=1)

    def calculate_log_probs(self, dist, action):
        return torch.stack([d.log_prob(action[:, i]) for i, d in enumerate(dist)], dim=1)

    def calculate_action_masks(self, action):
        mask = torch.ones_like(action)
        assert action.shape == mask.shape

        return mask

    def construct_final_action(self, action):
        return action

    def _get_embed_text(self, text):
        _, hidden = self.text_rnn(self.word_embedding(text))
        return hidden[-1]

    def get_config_dict(self):
        del self.config['__class__']
        self.config['self'] = str(self.config['self'])
        self.config['action_space'] = self.config['action_space'].nvec.tolist()
        return self.config