File size: 4,625 Bytes
be5548b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import argparse
import json
import time
import numpy as np
import torch
from pathlib import Path

from utils.babyai_utils.baby_agent import load_agent
from utils.env import make_env
from utils.other import seed
from utils.storage import get_model_dir
from utils.storage import get_status
from models import *
import subprocess

# Parse arguments

parser = argparse.ArgumentParser()
parser.add_argument("--model", required=True,
                    help="name of the trained model (REQUIRED)")
parser.add_argument("--seed", type=int, default=0,
                    help="random seed (default: 0)")
parser.add_argument("--max-steps", type=int, default=None,
                    help="max num of steps")
parser.add_argument("--shift", type=int, default=0,
                    help="number of times the environment is reset at the beginning (default: 0)")
parser.add_argument("--argmax", action="store_true", default=False,
                    help="select the action with highest probability (default: False)")
parser.add_argument("--pause", type=float, default=0.5,
                    help="pause duration between two consequent actions of the agent (default: 0.5)")
parser.add_argument("--env-name", type=str, default=None, required=True,
                    help="env name")
parser.add_argument("--gif", type=str, default=None,
                    help="store output as gif with the given filename", required=True)
parser.add_argument("--episodes", type=int, default=10,
                    help="number of episodes to visualize")

args = parser.parse_args()

# Set seed for all randomness sources

seed(args.seed)

save = args.gif
if save:
    savename = args.gif
    if savename == "model_id":
        savename = args.model.replace('storage/', '')
        savename = savename.replace('/','_')
        savename += '_{}'.format(args.seed)




# Set device

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Device: {device}\n")

# Load environment

if str(args.model).startswith("./storage/"):
    args.model = args.model.replace("./storage/", "")

if str(args.model).startswith("storage/"):
    args.model = args.model.replace("storage/", "")

with open(Path("./storage") / args.model / "config.json") as f:
    conf = json.load(f)

if args.env_name is None:
    # load env_args from status
    env_args = {}
    if not "env_args" in conf.keys():
        env_args = get_status(get_model_dir(args.model), None)['env_args']
    else:
        env_args = conf["env_args"]

    env = make_env(args.env_name, args.seed, env_args=env_args)
else:
    env_name = args.env_name
    env = make_env(args.env_name, args.seed)

for _ in range(args.shift):
    env.reset()
print("Environment loaded\n")

# Define agent
model_dir = get_model_dir(args.model)
num_frames = None
agent = load_agent(env, model_dir, args.argmax, num_frames)

print("Agent loaded\n")

# Run the agent

if save:
   from imageio import mimsave
   old_frames = []
   frames = []

# Create a window to view the environment
env.render(mode='human')

def plt_2_rgb(env):
    data = np.frombuffer(env.window.fig.canvas.tostring_rgb(), dtype=np.uint8)
    data = data.reshape(env.window.fig.canvas.get_width_height()[::-1] + (3,))
    return data


for episode in range(args.episodes):
    print("episode:", episode)
    obs = env.reset()

    env.render(mode='human')
    if save:
        frames.append(plt_2_rgb(env))

    i = 0
    while True:
        i += 1

        action = agent.get_action(obs)
        obs, reward, done, _ = env.step(action)
        agent.analyze_feedback(reward, done)
        env.render(mode='human')

        if save:
            img = plt_2_rgb(env)
            frames.append(img)
            if done:
                # quadruple last frame to pause between episodes
                for i in range(3):
                    same_img = np.copy(img)
                    # toggle a pixel between frames to avoid cropping when going from gif to mp4
                    same_img[0,0,2] = 0 if (i % 2) == 0 else 255
                    frames.append(same_img)

        if done or env.window.closed:
            break

        if args.max_steps is not None:
            if i > args.max_steps:
                break


    if env.window.closed:
        break

if save:
    # from IPython import embed; embed()
    print(f"Saving to {savename} ", end="")
    mimsave(savename + '.gif', frames, duration=args.pause)
    # Reduce gif size
    # bashCommand = "gifsicle -O3 --colors 32 -o {}.gif {}.gif".format(savename, savename)
    # process = subprocess.run(bashCommand.split(), stdout=subprocess.PIPE)


    print("Done.")