Spaces:
Running
Running
File size: 8,547 Bytes
afe1a07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "VjYy0F2gZIPR"
},
"outputs": [],
"source": [
"%cd /content\n",
"!git clone -b dev https://github.com/camenduru/FluxMusic\n",
"%cd C:/Users/Curt/Developer/AItools/AIaudio/AudioCreation/FluxMusicJupyter/FluxMusic\n",
"\n",
"!apt -y install -qq aria2\n",
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/audo/FluxMusic/resolve/main/musicflow_b.pt -d C:/Users/Curt/Developer/AItools/AIaudio/AudioCreation/FluxMusicJupyter/FluxMusic -o musicflow_b.pt\n",
"\n",
"!pip install transformers diffusers accelerate einops soundfile progressbar unidecode phonemizer torchlibrosa ftfy pandas timm matplotlib numpy==1.26.4 thop flash-attn==2.6.3 sentencepiece"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "NoTEt9Wto70D"
},
"outputs": [],
"source": [
"%cd C:/Users/Curt/Developer/AItools/AIaudio/AudioCreation/FluxMusicJupyter\n",
"\n",
"import os\n",
"import torch\n",
"import argparse\n",
"import math\n",
"from einops import rearrange, repeat\n",
"from PIL import Image\n",
"from diffusers import AutoencoderKL\n",
"from transformers import SpeechT5HifiGan\n",
"\n",
"from utils import load_t5, load_clap, load_ae\n",
"from train import RF\n",
"from constants import build_model\n",
"\n",
"def prepare(t5, clip, img, prompt):\n",
" bs, c, h, w = img.shape\n",
" if bs == 1 and not isinstance(prompt, str):\n",
" bs = len(prompt)\n",
"\n",
" img = rearrange(img, \"b c (h ph) (w pw) -> b (h w) (c ph pw)\", ph=2, pw=2)\n",
" if img.shape[0] == 1 and bs > 1:\n",
" img = repeat(img, \"1 ... -> bs ...\", bs=bs)\n",
"\n",
" img_ids = torch.zeros(h // 2, w // 2, 3)\n",
" img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]\n",
" img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]\n",
" img_ids = repeat(img_ids, \"h w c -> b (h w) c\", b=bs)\n",
"\n",
" if isinstance(prompt, str):\n",
" prompt = [prompt]\n",
" txt = t5(prompt)\n",
" if txt.shape[0] == 1 and bs > 1:\n",
" txt = repeat(txt, \"1 ... -> bs ...\", bs=bs)\n",
" txt_ids = torch.zeros(bs, txt.shape[1], 3)\n",
"\n",
" vec = clip(prompt)\n",
" if vec.shape[0] == 1 and bs > 1:\n",
" vec = repeat(vec, \"1 ... -> bs ...\", bs=bs)\n",
"\n",
" print(img_ids.size(), txt.size(), vec.size())\n",
" return img, {\n",
" \"img_ids\": img_ids.to(img.device),\n",
" \"txt\": txt.to(img.device),\n",
" \"txt_ids\": txt_ids.to(img.device),\n",
" \"y\": vec.to(img.device),\n",
" }\n",
"\n",
"version=\"base\"\n",
"seed=2024\n",
"prompt_file=\"C:/Users/Curt/Developer/AItools/AIaudio/AudioCreation/FluxMusicJupyter/config/example.txt\"\n",
"\n",
"print('generate with MusicFlux')\n",
"torch.manual_seed(seed)\n",
"torch.set_grad_enabled(False)\n",
"device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n",
"\n",
"latent_size = (256, 16)\n",
"\n",
"model = build_model(version).to(device)\n",
"local_path = 'C:/Users/Curt/Developer/AItools/AIaudio/AudioCreation/FluxMusicJupyter/musicflow_b.pt'\n",
"state_dict = torch.load(local_path, map_location=lambda storage, loc: storage, weights_only=True)\n",
"model.load_state_dict(state_dict['ema'])\n",
"model.eval() # important!\n",
"diffusion = RF()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "B5ebyTmto70D"
},
"outputs": [],
"source": [
"t5 = load_t5(device, max_length=256)\n",
"clap = load_clap(device, max_length=256)\n",
"\n",
"vae = AutoencoderKL.from_pretrained('cvssp/audioldm2', subfolder=\"vae\").to(device)\n",
"vocoder = SpeechT5HifiGan.from_pretrained('cvssp/audioldm2', subfolder=\"vocoder\").to(device)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "xqG8Px6xo70D"
},
"outputs": [],
"source": [
"prompt_file=\"C:/Users/Curt/Developer/AItools/AIaudio/AudioCreation/FluxMusicJupyter/config/example.txt\"\n",
"\n",
"with open(prompt_file, 'r') as f:\n",
" conds_txt = f.readlines()\n",
"L = len(conds_txt)\n",
"unconds_txt = [\"low quality, gentle\"] * L\n",
"print(L, conds_txt, unconds_txt)\n",
"\n",
"init_noise = torch.randn(L, 8, latent_size[0], latent_size[1]).cuda()\n",
"\n",
"STEPSIZE = 50\n",
"img, conds = prepare(t5, clap, init_noise, conds_txt)\n",
"_, unconds = prepare(t5, clap, init_noise, unconds_txt)\n",
"with torch.autocast(device_type='cuda'):\n",
" images = diffusion.sample_with_xps(model, img, conds=conds, null_cond=unconds, sample_steps = STEPSIZE, cfg = 7.0)\n",
"\n",
"print(images[-1].size(), )\n",
"\n",
"images = rearrange(\n",
" images[-1],\n",
" \"b (h w) (c ph pw) -> b c (h ph) (w pw)\",\n",
" h=128,\n",
" w=8,\n",
" ph=2,\n",
" pw=2,)\n",
"# print(images.size())\n",
"latents = 1 / vae.config.scaling_factor * images\n",
"mel_spectrogram = vae.decode(latents).sample\n",
"print(mel_spectrogram.size())"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "ytAXlAEdo70D"
},
"outputs": [],
"source": [
"!mkdir C:/Users/Curt/Developer/AItools/AIaudio/AudioCreation/FluxMusicJupyter/FluxMusic/b_output\n",
"\n",
"for i in range(L):\n",
" x_i = mel_spectrogram[i]\n",
" if x_i.dim() == 4:\n",
" x_i = x_i.squeeze(1)\n",
" waveform = vocoder(x_i)\n",
" waveform = waveform[0].cpu().float().detach().numpy()\n",
" print(waveform.shape)\n",
" # import soundfile as sf\n",
" # sf.write('reconstruct.wav', waveform, samplerate=16000)\n",
" from scipy.io import wavfile\n",
" wavfile.write('C:/Users/Curt/Developer/AItools/AIaudio/AudioCreation/FluxMusicJupyter/FluxMusic/b_output/sample_' + str(i) + '.wav', 16000, waveform)"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"gpuType": "T4",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 0
} |