Spaces:
Runtime error
Runtime error
File size: 5,263 Bytes
3a2e60d bea24f7 3a2e60d 84c69e6 3a2e60d 50811dd 1a320a6 3a2e60d 1a320a6 3a2e60d 1480d4a 053cee9 3a2e60d 3cc7516 3a2e60d 44fd978 3a2e60d 3cc7516 3a2e60d 3d09c0a 1a320a6 053cee9 bea24f7 3a2e60d 44fd978 3a2e60d d065a7f faa7c0d ee0d592 faa7c0d 3a2e60d bea24f7 d9e8d80 3a2e60d bbf274a 97b0cf1 3a2e60d 97b0cf1 44fd978 c220e56 547e7ab 3a2e60d bbf274a 3a2e60d bea24f7 3a2e60d 89ea184 8678313 3d09c0a 3a2e60d bbf274a 3a2e60d bbf274a 3a2e60d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
from io import BytesIO
import streamlit as st
import pandas as pd
import os
import numpy as np
from streamlit import caching
from PIL import Image
from model.flax_clip_vision_marian.modeling_clip_vision_marian import (
FlaxCLIPVisionMarianMT,
)
from transformers import MarianTokenizer
from utils import (
get_transformed_image,
)
import matplotlib.pyplot as plt
from mtranslate import translate
from session import _get_state
state = _get_state()
@st.cache
def load_model(ckpt):
return FlaxCLIPVisionMarianMT.from_pretrained(ckpt)
tokenizer = MarianTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-es")
@st.cache
def generate_sequence(pixel_values, num_beams, temperature, top_p, do_sample, top_k, max_length):
output_ids = state.model.generate(input_ids=pixel_values, max_length=max_length, num_beams=num_beams, temperature=temperature, top_p = top_p, top_k=top_k, do_sample=do_sample)
print(output_ids)
output_sequence = tokenizer.batch_decode(output_ids[0], skip_special_tokens=True, max_length=max_length)
return output_sequence
def read_markdown(path, parent="./sections/"):
with open(os.path.join(parent, path)) as f:
return f.read()
checkpoints = ["./ckpt/ckpt-23999"] # TODO: Maybe add more checkpoints?
dummy_data = pd.read_csv("references.tsv", sep="\t")
st.set_page_config(
page_title="Spanish Image Captioning",
layout="wide",
initial_sidebar_state="collapsed",
page_icon="./misc/csi-logo.png",
)
st.title("Spanish Image Captioning")
st.write(
"[Bhavitvya Malik](https://huggingface.co/bhavitvyamalik), [Gunjan Chhablani](https://huggingface.co/gchhablani)"
)
st.sidebar.title("Generation Parameters")
max_length = st.sidebar.number_input("Max Length", min_value=16, max_value=128, value=64, step=1, help="The maximum length of sequence to be generated.")
do_sample = st.sidebar.checkbox("Sample", value=False, help="Sample from the model instead of using beam search.")
top_k = st.sidebar.number_input("Top K", min_value=10, max_value=200, value=50, step=1, help="The number of highest probability vocabulary tokens to keep for top-k-filtering.")
num_beams = st.sidebar.number_input("Number of Beams", min_value=2, max_value=10, value=4, step=1, help="Number of beams to be used in beam search.")
temperature = st.sidebar.select_slider("Temperature", options = list(np.arange(0.0,1.1, step=0.1)), value=1.0, help ="The value used to module the next token probabilities.", format_func=lambda x: f"{x:.2f}")
top_p = st.sidebar.select_slider("Top-P", options = list(np.arange(0.0,1.1, step=0.1)),value=1.0, help="Nucleus Sampling : If set to float < 1, only the most probable tokens with probabilities that add up to :obj:`top_p` or higher are kept for generation.", format_func=lambda x: f"{x:.2f}")
if st.sidebar.button("Clear All Cache"):
caching.clear_cache()
image_col, intro_col = st.beta_columns([3, 8])
image_col.image("./misc/sic-logo.png", use_column_width="always")
intro_col.write(read_markdown("intro.md"))
with st.beta_expander("Usage"):
st.markdown(read_markdown("usage.md"))
with st.beta_expander("Article"):
st.write(read_markdown("abstract.md"))
st.write(read_markdown("caveats.md"))
st.write("## Methodology")
st.image(
"./misc/Spanish-IC.png"
)
st.markdown(read_markdown("pretraining.md"))
st.write(read_markdown("challenges.md"))
st.write(read_markdown("social_impact.md"))
st.write(read_markdown("references.md"))
# st.write(read_markdown("checkpoints.md"))
st.write(read_markdown("acknowledgements.md"))
if state.model is None:
with st.spinner("Loading model..."):
state.model = load_model(checkpoints[0])
first_index = 40
# Init Session State
if state.image_file is None:
state.image_file = dummy_data.loc[first_index, "image_file"]
state.caption = dummy_data.loc[first_index, "caption"].strip("- ")
image_path = os.path.join("images", state.image_file)
image = plt.imread(image_path)
state.image = image
new_col1, new_col2 = st.beta_columns([5,5])
if new_col1.button("Get a random example", help="Get a random example from one of the seeded examples."):
sample = dummy_data.sample(1).reset_index()
state.image_file = sample.loc[0, "image_file"]
state.caption = sample.loc[0, "caption"].strip("- ")
image_path = os.path.join("images", state.image_file)
image = plt.imread(image_path)
state.image = image
transformed_image = get_transformed_image(state.image)
# Display Image
new_col1.image(state.image, use_column_width="always")
# Display Reference Caption
with new_col1.beta_expander("Reference Caption"):
st.write("**Reference Caption**: " + state.caption)
st.markdown(
f"""**English Translation**: {translate(state.caption, 'en')}"""
)
sequence = ['']
if new_col2.button("Generate Caption", help="Generate a caption in the Spanish."):
with st.spinner("Generating Sequence..."):
sequence = generate_sequence(transformed_image, num_beams, temperature, top_p, do_sample, top_k, max_length)
# print(sequence)
if sequence!=['']:
new_col2.write(
"**Generated Caption**: "+sequence[0]
)
new_col2.write(
"**English Translation**: "+ translate(sequence[0])
)
|