Spaces:
Runtime error
Runtime error
File size: 4,931 Bytes
3a2e60d 84c69e6 3a2e60d 1480d4a 053cee9 3a2e60d 3cc7516 3a2e60d 44fd978 3a2e60d 3cc7516 3a2e60d 053cee9 3a2e60d 44fd978 3a2e60d faa7c0d 3a2e60d 97b0cf1 3a2e60d 97b0cf1 44fd978 3a2e60d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
from io import BytesIO
import streamlit as st
import pandas as pd
import json
import os
import numpy as np
from streamlit.elements import markdown
from PIL import Image
from model.flax_clip_vision_marian.modeling_clip_vision_marian import (
FlaxCLIPVisionMarianMT,
)
from transformers import MarianTokenizer
from utils import (
get_transformed_image,
)
import matplotlib.pyplot as plt
from mtranslate import translate
from session import _get_state
state = _get_state()
@st.cache
def load_model(ckpt):
return FlaxCLIPVisionMarianMT.from_pretrained(ckpt)
tokenizer = MarianTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-es")
@st.cache(persist=True)
def generate_sequence(pixel_values, num_beams, temperature, top_p):
output_ids = model.generate(input_ids=pixel_values, max_length=64, num_beams=num_beams, temperature=temperature, top_p = top_p)
print(output_ids)
output_sequence = tokenizer.batch_decode(output_ids[0], skip_special_tokens=True, max_length=64)
return output_sequence
def read_markdown(path, parent="./sections/"):
with open(os.path.join(parent, path)) as f:
return f.read()
checkpoints = ["./ckpt/ckpt-23999"] # TODO: Maybe add more checkpoints?
dummy_data = pd.read_csv("references.tsv", sep="\t")
st.set_page_config(
page_title="Spanish Image Captioning",
layout="wide",
initial_sidebar_state="collapsed",
page_icon="./misc/csi-logo.png",
)
st.title("Spanish Image Captioning")
st.write(
"[Bhavitvya Malik](https://huggingface.co/bhavitvyamalik), [Gunjan Chhablani](https://huggingface.co/gchhablani)"
)
st.sidebar.title("Generation Parameters")
num_beams = st.sidebar.number_input("Number of Beams", min_value=2, max_value=10, value=4, step=1, help="Number of beams to be used in beam search.")
temperature = st.sidebar.select_slider("Temperature", options = list(np.arange(0.0,1.1, step=0.1)), value=1.0, help ="The value used to module the next token probabilities.", format_func=lambda x: f"{x:.2f}")
top_p = st.sidebar.select_slider("Top-P", options = list(np.arange(0.0,1.1, step=0.1)),value=1.0, help="Nucleus Sampling : If set to float < 1, only the most probable tokens with probabilities that add up to :obj:`top_p` or higher are kept for generation.", format_func=lambda x: f"{x:.2f}")
image_col, intro_col = st.beta_columns([3, 8])
image_col.image("./misc/sic-logo.png", use_column_width="always")
intro_col.write(read_markdown("intro.md"))
with st.beta_expander("Usage"):
st.markdown(read_markdown("usage.md"))
with st.beta_expander("Article"):
st.write(read_markdown("abstract.md"))
st.write(read_markdown("caveats.md"))
st.write("# Methodology")
st.image(
"./misc/Spanish-IC.png", caption="Seq2Seq model for Image-text Captioning."
)
st.markdown(read_markdown("pretraining.md"))
st.write(read_markdown("challenges.md"))
st.write(read_markdown("social_impact.md"))
st.write(read_markdown("references.md"))
# st.write(read_markdown("checkpoints.md"))
st.write(read_markdown("acknowledgements.md"))
first_index = 20
# Init Session State
if state.image_file is None:
state.image_file = dummy_data.loc[first_index, "image_file"]
state.caption = dummy_data.loc[first_index, "caption"].strip("- ")
image_path = os.path.join("images", state.image_file)
image = plt.imread(image_path)
state.image = image
# col1, col2 = st.beta_columns([6, 4])
# col2.write("OR")
# uploaded_file = col2.file_uploader("Upload your image", type=["png", "jpg", "jpeg"])
# if uploaded_file is not None:
# state.image_file = os.path.join("images", uploaded_file.name)
# state.image = np.array(Image.open(uploaded_file))
transformed_image = get_transformed_image(state.image)
new_col1, new_col2 = st.beta_columns([5,5])
# Display Image
new_col1.image(state.image, use_column_width="always")
if new_col2.button("Get a random example", help="Get a random example from one of the seeded examples."):
sample = dummy_data.sample(1).reset_index()
state.image_file = sample.loc[0, "image_file"]
state.caption = sample.loc[0, "caption"].strip("- ")
image_path = os.path.join("images", state.image_file)
image = plt.imread(image_path)
state.image = image
# Display Reference Caption
new_col2.write("**Reference Caption**: " + state.caption)
new_col2.markdown(
f"""**English Translation**: {translate(state.caption, 'en')}"""
)
with st.spinner("Loading model..."):
model = load_model(checkpoints[0])
sequence = ['']
if new_col2.button("Generate Caption", help="Generate a caption in the specified language."):
with st.spinner("Generating Sequence..."):
sequence = generate_sequence(transformed_image, num_beams, temperature, top_p)
# print(sequence)
if sequence!=['']:
st.write(
"**Generated Caption**: "+sequence[0]
)
st.write(
"**English Translation**: "+ translate(sequence[0])
)
|