Spaces:
Runtime error
Runtime error
File size: 21,460 Bytes
668c729 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 |
# NEW
import os
# from functools import partial
from pickle import UnpicklingError
from typing import Dict, Set, Tuple, Union
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict, unfreeze
from flax.serialization import from_bytes, to_bytes
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.random import PRNGKey
from transformers.configuration_utils import PretrainedConfig
from transformers.file_utils import (
FLAX_WEIGHTS_NAME,
WEIGHTS_NAME,
PushToHubMixin,
cached_path,
hf_bucket_url,
is_offline_mode,
is_remote_url,
)
from transformers.modeling_flax_pytorch_utils import (
load_pytorch_checkpoint_in_flax_state_dict,
)
from transformers.utils import logging
from .generation_clip_vision_utils import FlaxCLIPVisionMBartGenerationMixin
logger = logging.get_logger(__name__)
class FlaxCLIPVisionMBartPreTrainedModel(
PushToHubMixin, FlaxCLIPVisionMBartGenerationMixin
):
r"""
Base class for all models.
:class:`~transformers.FlaxPreTrainedModel` takes care of storing the configuration of the models and handles
methods for loading, downloading and saving models.
Class attributes (overridden by derived classes):
- **config_class** (:class:`~transformers.PretrainedConfig`) -- A subclass of
:class:`~transformers.PretrainedConfig` to use as configuration class for this model architecture.
- **base_model_prefix** (:obj:`str`) -- A string indicating the attribute associated to the base model in
derived classes of the same architecture adding modules on top of the base model.
"""
config_class = None
base_model_prefix = ""
def __init__(
self,
config: PretrainedConfig,
module: nn.Module,
input_shape: Tuple = (1, 1),
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
):
if config is None:
raise ValueError("config cannot be None")
if module is None:
raise ValueError("module cannot be None")
# Those are private to be exposed as typed property on derived classes.
self._config = config
self._module = module
# Those are public as their type is generic to every derived classes.
self.key = PRNGKey(seed)
self.dtype = dtype
# randomly initialized parameters
random_params = self.init_weights(self.key, input_shape)
# save required_params as set
self._required_params = set(flatten_dict(unfreeze(random_params)).keys())
self.params = random_params
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple) -> Dict:
raise NotImplementedError(f"init method has to be implemented for {self}")
@classmethod
def _from_config(cls, config, **kwargs):
"""
All context managers that the model should be initialized under go here.
"""
return cls(config, **kwargs)
@property
def config(self) -> PretrainedConfig:
return self._config
@property
def module(self) -> nn.Module:
return self._module
@property
def params(self) -> Union[Dict, FrozenDict]:
return self._params
@property
def required_params(self) -> Set:
return self._required_params
@params.setter
def params(self, params: Union[Dict, FrozenDict]):
if isinstance(params, FrozenDict):
params = unfreeze(params)
param_keys = set(flatten_dict(params).keys())
if len(self.required_params - param_keys) > 0:
raise ValueError(
"Some parameters are missing. Make sure that `params` include the following "
f"parameters {self.required_params - param_keys}"
)
self._params = params
@classmethod
def from_pretrained(
cls,
pretrained_model_name_or_path: Union[str, os.PathLike],
dtype: jnp.dtype = jnp.float32,
*model_args,
**kwargs,
):
r"""
Instantiate a pretrained flax model from a pre-trained model configuration.
The warning `Weights from XXX not initialized from pretrained model` means that the weights of XXX do not come
pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
task.
The warning `Weights from XXX not used in YYY` means that the layer XXX is not used by YYY, therefore those
weights are discarded.
Parameters:
pretrained_model_name_or_path (:obj:`str` or :obj:`os.PathLike`):
Can be either:
- A string, the `model id` of a pretrained model hosted inside a model repo on huggingface.co.
Valid model ids can be located at the root-level, like ``bert-base-uncased``, or namespaced under
a user or organization name, like ``dbmdz/bert-base-german-cased``.
- A path to a `directory` containing model weights saved using
:func:`~transformers.FlaxPreTrainedModel.save_pretrained`, e.g., ``./my_model_directory/``.
- A path or url to a `pt index checkpoint file` (e.g, ``./tf_model/model.ckpt.index``). In this
case, ``from_pt`` should be set to :obj:`True`.
model_args (sequence of positional arguments, `optional`):
All remaning positional arguments will be passed to the underlying model's ``__init__`` method.
config (:obj:`Union[PretrainedConfig, str, os.PathLike]`, `optional`):
Can be either:
- an instance of a class derived from :class:`~transformers.PretrainedConfig`,
- a string or path valid as input to :func:`~transformers.PretrainedConfig.from_pretrained`.
Configuration for the model to use instead of an automatically loaded configuation. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the `model id` string of a pretrained
model).
- The model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded
by supplying the save directory.
- The model is loaded by supplying a local directory as ``pretrained_model_name_or_path`` and a
configuration JSON file named `config.json` is found in the directory.
cache_dir (:obj:`Union[str, os.PathLike]`, `optional`):
Path to a directory in which a downloaded pretrained model configuration should be cached if the
standard cache should not be used.
from_pt (:obj:`bool`, `optional`, defaults to :obj:`False`):
Load the model weights from a PyTorch checkpoint save file (see docstring of
``pretrained_model_name_or_path`` argument).
force_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
resume_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to delete incompletely received files. Will attempt to resume the download if such a
file exists.
proxies (:obj:`Dict[str, str], `optional`):
A dictionary of proxy servers to use by protocol or endpoint, e.g., :obj:`{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
local_files_only(:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to only look at local files (i.e., do not try to download the model).
revision(:obj:`str`, `optional`, defaults to :obj:`"main"`):
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
git-based system for storing models and other artifacts on huggingface.co, so ``revision`` can be any
identifier allowed by git.
kwargs (remaining dictionary of keyword arguments, `optional`):
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
:obj:`output_attentions=True`). Behaves differently depending on whether a ``config`` is provided or
automatically loaded:
- If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the
underlying model's ``__init__`` method (we assume all relevant updates to the configuration have
already been done)
- If a configuration is not provided, ``kwargs`` will be first passed to the configuration class
initialization function (:func:`~transformers.PretrainedConfig.from_pretrained`). Each key of
``kwargs`` that corresponds to a configuration attribute will be used to override said attribute
with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration
attribute will be passed to the underlying model's ``__init__`` function.
Examples::
>>> from transformers import BertConfig, FlaxBertModel
>>> # Download model and configuration from huggingface.co and cache.
>>> model = FlaxBertModel.from_pretrained('bert-base-cased')
>>> # Model was saved using `save_pretrained('./test/saved_model/')` (for example purposes, not runnable).
>>> model = FlaxBertModel.from_pretrained('./test/saved_model/')
>>> # Loading from a PyTorch checkpoint file instead of a PyTorch model (slower, for example purposes, not runnable).
>>> config = BertConfig.from_json_file('./pt_model/config.json')
>>> model = FlaxBertModel.from_pretrained('./pt_model/pytorch_model.bin', from_pt=True, config=config)
"""
config = kwargs.pop("config", None)
cache_dir = kwargs.pop("cache_dir", None)
from_pt = kwargs.pop("from_pt", False)
force_download = kwargs.pop("force_download", False)
resume_download = kwargs.pop("resume_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", False)
use_auth_token = kwargs.pop("use_auth_token", None)
revision = kwargs.pop("revision", None)
from_pipeline = kwargs.pop("_from_pipeline", None)
from_auto_class = kwargs.pop("_from_auto", False)
user_agent = {
"file_type": "model",
"framework": "flax",
"from_auto_class": from_auto_class,
}
if from_pipeline is not None:
user_agent["using_pipeline"] = from_pipeline
if is_offline_mode() and not local_files_only:
logger.info("Offline mode: forcing local_files_only=True")
local_files_only = True
# Load config if we don't provide a configuration
if not isinstance(config, PretrainedConfig):
config_path = (
config if config is not None else pretrained_model_name_or_path
)
config, model_kwargs = cls.config_class.from_pretrained(
config_path,
*model_args,
cache_dir=cache_dir,
return_unused_kwargs=True,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
revision=revision,
_from_auto=from_auto_class,
_from_pipeline=from_pipeline,
**kwargs,
)
else:
model_kwargs = kwargs
# Add the dtype to model_kwargs
model_kwargs["dtype"] = dtype
# Load model
if pretrained_model_name_or_path is not None:
if os.path.isdir(pretrained_model_name_or_path):
if from_pt and os.path.isfile(
os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
):
# Load from a PyTorch checkpoint
archive_file = os.path.join(
pretrained_model_name_or_path, WEIGHTS_NAME
)
elif os.path.isfile(
os.path.join(pretrained_model_name_or_path, FLAX_WEIGHTS_NAME)
):
# Load from a Flax checkpoint
archive_file = os.path.join(
pretrained_model_name_or_path, FLAX_WEIGHTS_NAME
)
else:
raise EnvironmentError(
f"Error no file named {[FLAX_WEIGHTS_NAME, WEIGHTS_NAME]} found in directory "
f"{pretrained_model_name_or_path} or `from_pt` set to False"
)
elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(
pretrained_model_name_or_path
):
archive_file = pretrained_model_name_or_path
else:
archive_file = hf_bucket_url(
pretrained_model_name_or_path,
filename=WEIGHTS_NAME if from_pt else FLAX_WEIGHTS_NAME,
revision=revision,
)
# redirect to the cache, if necessary
try:
resolved_archive_file = cached_path(
archive_file,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
user_agent=user_agent,
)
except EnvironmentError as err:
logger.error(err)
msg = (
f"Can't load weights for '{pretrained_model_name_or_path}'. Make sure that:\n\n"
f"- '{pretrained_model_name_or_path}' is a correct model identifier listed on 'https://huggingface.co/models'\n\n"
f"- or '{pretrained_model_name_or_path}' is the correct path to a directory containing a file named {WEIGHTS_NAME}.\n\n"
)
raise EnvironmentError(msg)
if resolved_archive_file == archive_file:
logger.info(f"loading weights file {archive_file}")
else:
logger.info(
f"loading weights file {archive_file} from cache at {resolved_archive_file}"
)
else:
resolved_archive_file = None
# init random models
model = cls(config, *model_args, **model_kwargs)
if from_pt:
state = load_pytorch_checkpoint_in_flax_state_dict(
model, resolved_archive_file
)
else:
with open(resolved_archive_file, "rb") as state_f:
try:
state = from_bytes(cls, state_f.read())
except UnpicklingError:
raise EnvironmentError(
f"Unable to convert {archive_file} to Flax deserializable object. "
)
# make sure all arrays are stored as jnp.arrays
# NOTE: This is to prevent a bug this will be fixed in Flax >= v0.3.4:
# https://github.com/google/flax/issues/1261
state = jax.tree_util.tree_map(jnp.array, state)
# if model is base model only use model_prefix key
if (
cls.base_model_prefix not in dict(model.params)
and cls.base_model_prefix in state
):
state = state[cls.base_model_prefix]
# if model is head model and we are loading weights from base model
# we initialize new params dict with base_model_prefix
if (
cls.base_model_prefix in dict(model.params)
and cls.base_model_prefix not in state
):
state = {cls.base_model_prefix: state}
# flatten dicts
state = flatten_dict(state)
random_state = flatten_dict(unfreeze(model.params))
missing_keys = model.required_params - set(state.keys())
unexpected_keys = set(state.keys()) - model.required_params
# add missing keys as random parameters
for missing_key in missing_keys:
state[missing_key] = random_state[missing_key]
# remove unexpected keys to not be saved again
for unexpected_key in unexpected_keys:
del state[unexpected_key]
if len(unexpected_keys) > 0:
logger.warning(
f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when "
f"initializing {model.__class__.__name__}: {unexpected_keys}\n"
f"- This IS expected if you are initializing {model.__class__.__name__} from the checkpoint of a model trained on another task "
f"or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n"
f"- This IS NOT expected if you are initializing {model.__class__.__name__} from the checkpoint of a model that you expect "
f"to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)."
)
else:
logger.info(
f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n"
)
if len(missing_keys) > 0:
logger.warning(
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at {pretrained_model_name_or_path} "
f"and are newly initialized: {missing_keys}\n"
f"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference."
)
else:
logger.info(
f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at {pretrained_model_name_or_path}.\n"
f"If your task is similar to the task the model of the checkpoint was trained on, "
f"you can already use {model.__class__.__name__} for predictions without further training."
)
# set correct parameters
model.params = unflatten_dict(state)
return model
def save_pretrained(
self,
save_directory: Union[str, os.PathLike],
params=None,
push_to_hub=False,
**kwargs,
):
"""
Save a model and its configuration file to a directory, so that it can be re-loaded using the
`:func:`~transformers.FlaxPreTrainedModel.from_pretrained`` class method
Arguments:
save_directory (:obj:`str` or :obj:`os.PathLike`):
Directory to which to save. Will be created if it doesn't exist.
push_to_hub (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to push your model to the Hugging Face model hub after saving it.
.. warning::
Using :obj:`push_to_hub=True` will synchronize the repository you are pushing to with
:obj:`save_directory`, which requires :obj:`save_directory` to be a local clone of the repo you are
pushing to if it's an existing folder. Pass along :obj:`temp_dir=True` to use a temporary directory
instead.
kwargs:
Additional key word arguments passed along to the
:meth:`~transformers.file_utils.PushToHubMixin.push_to_hub` method.
"""
if os.path.isfile(save_directory):
logger.error(
f"Provided path ({save_directory}) should be a directory, not a file"
)
return
if push_to_hub:
commit_message = kwargs.pop("commit_message", None)
repo = self._create_or_get_repo(save_directory, **kwargs)
os.makedirs(save_directory, exist_ok=True)
# get abs dir
save_directory = os.path.abspath(save_directory)
# save config as well
self.config.architectures = [self.__class__.__name__[4:]]
self.config.save_pretrained(save_directory)
# save model
output_model_file = os.path.join(save_directory, FLAX_WEIGHTS_NAME)
with open(output_model_file, "wb") as f:
params = params if params is not None else self.params
model_bytes = to_bytes(params)
f.write(model_bytes)
logger.info(f"Model weights saved in {output_model_file}")
if push_to_hub:
url = self._push_to_hub(repo, commit_message=commit_message)
logger.info(f"Model pushed to the hub in this commit: {url}")
|