Spaces:
Runtime error
Runtime error
File size: 5,760 Bytes
54dc7b4 47121bf 0c7ca41 47121bf 54dc7b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
from .utils import get_transformed_image
import streamlit as st
import numpy as np
import pandas as pd
import os
import matplotlib.pyplot as plt
from mtranslate import translate
from .utils import (
read_markdown,
tokenizer,
language_mapping,
code_to_name
)
import requests
from PIL import Image
from .model.flax_clip_vision_mbart.modeling_clip_vision_mbart import (
FlaxCLIPVisionMBartForConditionalGeneration,
)
from streamlit import caching
def app(state):
mic_state = state
with st.beta_expander("Usage"):
st.write(read_markdown("usage.md"))
st.write("\n")
st.write(read_markdown("intro.md"))
# st.sidebar.title("Generation Parameters")
max_length = 64
with st.sidebar.beta_expander('Generation Parameters'):
do_sample = st.checkbox("Sample", value=False, help="Sample from the model instead of using beam search.")
top_k = st.number_input("Top K", min_value=10, max_value=200, value=50, step=1, help="The number of highest probability vocabulary tokens to keep for top-k-filtering.")
num_beams = st.number_input(label="Number of Beams", min_value=2, max_value=10, value=4, step=1, help="Number of beams to be used in beam search.")
temperature = st.select_slider(label="Temperature", options = list(np.arange(0.0,1.1, step=0.1)), value=1.0, help ="The value used to module the next token probabilities.", format_func=lambda x: f"{x:.2f}")
top_p = st.select_slider(label = "Top-P", options = list(np.arange(0.0,1.1, step=0.1)),value=1.0, help="Nucleus Sampling : If set to float < 1, only the most probable tokens with probabilities that add up to :obj:`top_p` or higher are kept for generation.", format_func=lambda x: f"{x:.2f}")
if st.button("Clear All Cache"):
caching.clear_cache()
@st.cache
def load_model(ckpt):
return FlaxCLIPVisionMBartForConditionalGeneration.from_pretrained(ckpt)
@st.cache
def generate_sequence(pixel_values, lang_code, num_beams, temperature, top_p, do_sample, top_k, max_length):
lang_code = language_mapping[lang_code]
output_ids = mic_state.model.generate(input_ids=pixel_values, forced_bos_token_id=tokenizer.lang_code_to_id[lang_code], max_length=max_length, num_beams=num_beams, temperature=temperature, top_p = top_p, top_k=top_k, do_sample=do_sample)
print(output_ids)
output_sequence = tokenizer.batch_decode(output_ids[0], skip_special_tokens=True, max_length=max_length)
return output_sequence
mic_checkpoints = ["flax-community/clip-vit-base-patch32_mbart-large-50"] # TODO: Maybe add more checkpoints?
dummy_data = pd.read_csv("reference.tsv", sep="\t")
first_index = 25
# Init Session State
if mic_state.image_file is None:
mic_state.image_file = dummy_data.loc[first_index, "image_file"]
mic_state.caption = dummy_data.loc[first_index, "caption"].strip("- ")
mic_state.lang_id = dummy_data.loc[first_index, "lang_id"]
image_path = os.path.join("images", mic_state.image_file)
image = plt.imread(image_path)
mic_state.image = image
if mic_state.model is None:
# Display Top-5 Predictions
with st.spinner("Loading model..."):
mic_state.model = load_model(mic_checkpoints[0])
query1 = st.text_input(
"Enter a URL to an image",
value="http://images.cocodataset.org/val2017/000000039769.jpg",
)
col1, col2, col3 = st.beta_columns([2,1, 2])
if col1.button(
"Get a random example",
help="Get a random example from the 100 `seeded` image-text pairs.",
):
sample = dummy_data.sample(1).reset_index()
mic_state.image_file = sample.loc[0, "image_file"]
mic_state.caption = sample.loc[0, "caption"].strip("- ")
mic_state.lang_id = sample.loc[0, "lang_id"]
image_path = os.path.join("images", mic_state.image_file)
image = plt.imread(image_path)
mic_state.image = image
col2.write("OR")
if col3.button("Use above URL"):
image_data = requests.get(query1, stream=True).raw
image = np.asarray(Image.open(image_data))
mic_state.image = image
transformed_image = get_transformed_image(mic_state.image)
new_col1, new_col2 = st.beta_columns([5,5])
# Display Image
new_col1.image(mic_state.image, use_column_width="always")
# Display Reference Caption
with new_col1.beta_expander("Reference Caption"):
st.write("**Reference Caption**: " + mic_state.caption)
st.markdown(
f"""**English Translation**: {mic_state.caption if mic_state.lang_id == "en" else translate(mic_state.caption, 'en')}"""
)
# Select Language
options = list(code_to_name.keys())
lang_id = new_col2.selectbox(
"Language",
index=options.index(mic_state.lang_id),
options=options,
format_func=lambda x: code_to_name[x],
help="The language in which caption is to be generated."
)
sequence = ['']
if new_col2.button("Generate Caption", help="Generate a caption in the specified language."):
with st.spinner("Generating Sequence..."):
sequence = generate_sequence(transformed_image, lang_id, num_beams, temperature, top_p, do_sample, top_k, max_length)
# print(sequence)
if sequence!=['']:
new_col2.write(
"**Generated Caption**: "+sequence[0]
)
new_col2.write(
"**English Translation**: "+ sequence[0] if lang_id=="en" else translate(sequence[0])
)
# image_col, intro_col = st.beta_columns([3, 8])
# image_col.image("./misc/mic-logo.png", use_column_width="always")
# intro_col.write(read_markdown("intro.md"))
|