Spaces:
Runtime error
Runtime error
File size: 39,777 Bytes
668c729 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 |
from typing import Dict, Optional
import flax
import jax
import jax.numpy as jnp
import jaxlib.xla_extension as jax_xla
import numpy as np
from jax import lax
from transformers.file_utils import ModelOutput
from transformers.generation_flax_logits_process import (
FlaxForcedBOSTokenLogitsProcessor,
FlaxForcedEOSTokenLogitsProcessor,
FlaxLogitsProcessorList,
FlaxMinLengthLogitsProcessor,
FlaxTemperatureLogitsWarper,
FlaxTopKLogitsWarper,
FlaxTopPLogitsWarper,
)
from transformers.utils import logging
logger = logging.get_logger(__name__)
@flax.struct.dataclass
class FlaxGreedySearchOutput(ModelOutput):
"""
Flax Base class for outputs of decoder-only generation models using greedy search.
Args:
sequences (:obj:`jax_xla.DeviceArray` of shape :obj:`(batch_size, max_length)`):
The generated sequences.
"""
sequences: jax_xla.DeviceArray = None
@flax.struct.dataclass
class FlaxSampleOutput(ModelOutput):
"""
Flax Base class for outputs of decoder-only generation models using sampling.
Args:
sequences (:obj:`jax_xla.DeviceArray` of shape :obj:`(batch_size, max_length)`):
The generated sequences.
"""
sequences: jax_xla.DeviceArray = None
@flax.struct.dataclass
class FlaxBeamSearchOutput(ModelOutput):
"""
Flax Base class for outputs of decoder-only generation models using greedy search.
Args:
sequences (:obj:`jax_xla.DeviceArray` of shape :obj:`(batch_size, max_length)`):
The generated sequences.
scores (:obj:`jax_xla.DeviceArray` of shape :obj:`(batch_size,)`):
The scores (log probabilites) of the generated sequences.
"""
sequences: jax_xla.DeviceArray = None
scores: jax_xla.DeviceArray = None
@flax.struct.dataclass
class GreedyState:
cur_len: jax_xla.DeviceArray
sequences: jax_xla.DeviceArray
running_token: jax_xla.DeviceArray
is_sent_finished: jax_xla.DeviceArray
model_kwargs: Dict[str, jax_xla.DeviceArray]
@flax.struct.dataclass
class SampleState:
cur_len: jax_xla.DeviceArray
sequences: jax_xla.DeviceArray
running_token: jax_xla.DeviceArray
is_sent_finished: jax_xla.DeviceArray
prng_key: jax_xla.DeviceArray
model_kwargs: Dict[str, jax_xla.DeviceArray]
@flax.struct.dataclass
class BeamSearchState:
cur_len: jax_xla.DeviceArray
running_sequences: jax_xla.DeviceArray
running_scores: jax_xla.DeviceArray
sequences: jax_xla.DeviceArray
scores: jax_xla.DeviceArray
is_sent_finished: jax_xla.DeviceArray
model_kwargs: Dict[str, jax_xla.DeviceArray]
class FlaxCLIPVisionMBartGenerationMixin:
"""
A class containing all of the functions supporting generation, to be used as a mixin in
:class:`~transformers.FlaxPreTrainedModel`.
"""
@staticmethod
def _run_loop_in_debug(cond_fn, body_fn, init_state):
"""
Run generation in untraced mode. This should only be used for debugging purposes.
"""
state = init_state
while cond_fn(state):
state = body_fn(state)
return state
def _prepare_encoder_decoder_kwargs_for_generation(self, input_ids, model_kwargs):
encoder_kwargs = {
argument: value
for argument, value in model_kwargs.items()
if not (
argument.startswith("decoder_") or argument.startswith("cross_attn")
)
}
model_kwargs["encoder_outputs"] = self.encode(
input_ids, return_dict=True, **encoder_kwargs
)
return model_kwargs
@staticmethod
def _expand_to_num_beams(tensor, num_beams):
return jnp.broadcast_to(
tensor[:, None], (tensor.shape[0], num_beams) + tensor.shape[1:]
)
def generate(
self,
input_ids: jax_xla.DeviceArray,
max_length: Optional[int] = None,
pad_token_id: Optional[int] = None,
bos_token_id: Optional[int] = None,
eos_token_id: Optional[int] = None,
decoder_start_token_id: Optional[int] = None,
do_sample: Optional[bool] = None,
prng_key: Optional[jax_xla.DeviceArray] = None,
top_k: Optional[int] = None,
top_p: Optional[float] = None,
temperature: Optional[float] = None,
num_beams: Optional[int] = None,
no_repeat_ngram_size: Optional[int] = None,
min_length: Optional[int] = None,
forced_bos_token_id: Optional[int] = None,
forced_eos_token_id: Optional[int] = None,
length_penalty: Optional[float] = None,
early_stopping: Optional[bool] = None,
trace: bool = True,
params: Optional[Dict[str, jax_xla.DeviceArray]] = None,
**model_kwargs,
):
r"""
Generates sequences for models with a language modeling head. The method currently supports greedy decoding,
and, multinomial sampling.
Apart from :obj:`input_ids`, all the arguments below will default to the value of the attribute of the same
name inside the :class:`~transformers.PretrainedConfig` of the model. The default values indicated are the
default values of those config.
Most of these parameters are explained in more detail in `this blog post
<https://huggingface.co/blog/how-to-generate>`__.
Parameters:
input_ids (:obj:`jax_xla.DeviceArray` of shape :obj:`(batch_size, sequence_length)`, `optional`):
The sequence used as a prompt for the generation.
max_length (:obj:`int`, `optional`, defaults to 20):
The maximum length of the sequence to be generated.
do_sample (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to use sampling ; use greedy decoding otherwise.
temperature (:obj:`float`, `optional`, defaults to 1.0):
The value used to module the next token probabilities.
top_k (:obj:`int`, `optional`, defaults to 50):
The number of highest probability vocabulary tokens to keep for top-k-filtering.
top_p (:obj:`float`, `optional`, defaults to 1.0):
If set to float < 1, only the most probable tokens with probabilities that add up to :obj:`top_p` or
higher are kept for generation.
pad_token_id (:obj:`int`, `optional`):
The id of the `padding` token.
bos_token_id (:obj:`int`, `optional`):
The id of the `beginning-of-sequence` token.
eos_token_id (:obj:`int`, `optional`):
The id of the `end-of-sequence` token.
num_beams (:obj:`int`, `optional`, defaults to 1):
Number of beams for beam search. 1 means no beam search.
decoder_start_token_id (:obj:`int`, `optional`):
If an encoder-decoder model starts decoding with a different token than `bos`, the id of that token.
trace (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether to trace generation. Setting ``trace=False`` should only be used for debugging and will lead to
a considerably slower runtime.
params (:obj:`Dict[str, jax_xla.DeviceArray]`, `optional`):
Optionally the model parameters can be passed. Can be useful for parallelized generation.
model_kwargs:
Additional model specific kwargs will be forwarded to the :obj:`forward` function of the model.
Return:
:class:`~transformers.file_utils.ModelOutput`.
Examples::
>>> from transformers import AutoTokenizer, FlaxAutoModelForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
>>> model = FlaxAutoModelForCausalLM.from_pretrained("distilgpt2")
>>> input_context = "The dog"
>>> # encode input context
>>> input_ids = tokenizer(input_context, return_tensors="jax").input_ids
>>> # generate candidates using sampling
>>> outputs = model.generate(input_ids=input_ids, max_length=20, top_k=30, do_sample=True)
>>> print("Generated:", tokenizer.batch_decode(outputs, skip_special_tokens=True))
"""
# set init values
max_length = (
max_length
if max_length is not None
else self.config.mbart_config.max_length
)
bos_token_id = (
bos_token_id
if bos_token_id is not None
else self.config.mbart_config.bos_token_id
)
pad_token_id = (
pad_token_id
if pad_token_id is not None
else self.config.mbart_config.pad_token_id
)
eos_token_id = (
eos_token_id
if eos_token_id is not None
else self.config.mbart_config.eos_token_id
)
decoder_start_token_id = (
decoder_start_token_id
if decoder_start_token_id
else self.config.mbart_config.decoder_start_token_id
)
prng_key = prng_key if prng_key is not None else jax.random.PRNGKey(0)
if decoder_start_token_id is None and self.config.is_encoder_decoder:
raise ValueError(
"`decoder_start_token_id` has to be defined for encoder-decoder generation."
)
if self.config.is_encoder_decoder:
# add encoder_outputs to model_kwargs
model_kwargs = self._prepare_encoder_decoder_kwargs_for_generation(
input_ids, model_kwargs
)
# prepare decoder_input_ids for generation
input_ids = (
jnp.ones((input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
)
do_sample = (
do_sample if do_sample is not None else self.config.mbart_config.do_sample
)
num_beams = (
num_beams if num_beams is not None else self.config.mbart_config.num_beams
)
if not do_sample and num_beams == 1:
logits_processor = self._get_logits_processor(
no_repeat_ngram_size,
min_length,
max_length,
eos_token_id,
forced_bos_token_id,
forced_eos_token_id,
)
return self._greedy_search(
input_ids,
max_length,
pad_token_id,
eos_token_id,
logits_processor=logits_processor,
trace=trace,
params=params,
model_kwargs=model_kwargs,
)
elif do_sample and num_beams == 1:
logits_warper = self._get_logits_warper(
top_k=top_k, top_p=top_p, temperature=temperature
)
logits_processor = self._get_logits_processor(
no_repeat_ngram_size,
min_length,
max_length,
eos_token_id,
forced_bos_token_id,
forced_eos_token_id,
)
return self._sample(
input_ids,
max_length,
pad_token_id,
eos_token_id,
prng_key,
logits_warper=logits_warper,
logits_processor=logits_processor,
trace=trace,
params=params,
model_kwargs=model_kwargs,
)
elif not do_sample and num_beams > 1:
# broadcast input_ids & encoder_outputs
input_ids = self._expand_to_num_beams(input_ids, num_beams=num_beams)
if "encoder_outputs" in model_kwargs:
model_kwargs["encoder_outputs"][
"last_hidden_state"
] = self._expand_to_num_beams(
model_kwargs["encoder_outputs"]["last_hidden_state"],
num_beams=num_beams,
)
if "attention_mask" in model_kwargs:
model_kwargs["attention_mask"] = self._expand_to_num_beams(
model_kwargs["attention_mask"], num_beams=num_beams
)
logits_processor = self._get_logits_processor(
no_repeat_ngram_size,
min_length,
max_length,
eos_token_id,
forced_bos_token_id,
forced_eos_token_id,
)
return self._beam_search(
input_ids,
max_length,
pad_token_id,
eos_token_id,
length_penalty=length_penalty,
early_stopping=early_stopping,
logits_processor=logits_processor,
trace=trace,
params=params,
model_kwargs=model_kwargs,
)
else:
raise NotImplementedError("`Beam sampling is currently not implemented.")
def _get_logits_warper(
self, top_k: int = None, top_p: float = None, temperature: float = None
) -> FlaxLogitsProcessorList:
"""
This class returns a :obj:`~transformers.FlaxLogitsProcessorList` list object that contains all relevant
:obj:`~transformers.FlaxLogitsWarper` instances used for multinomial sampling.
"""
# init warp parameters
top_k = top_k if top_k is not None else self.config.mbart_config.top_k
top_p = top_p if top_p is not None else self.config.mbart_config.top_p
temperature = (
temperature
if temperature is not None
else self.config.mbart_config.temperature
)
# instantiate warpers list
warpers = FlaxLogitsProcessorList()
# the following idea is largely copied from this PR: https://github.com/huggingface/transformers/pull/5420/files
# all samplers can be found in `generation_utils_samplers.py`
if temperature is not None and temperature != 1.0:
warpers.append(FlaxTemperatureLogitsWarper(temperature))
if top_k is not None and top_k != 0:
warpers.append(FlaxTopKLogitsWarper(top_k=top_k, min_tokens_to_keep=1))
if top_p is not None and top_p < 1.0:
warpers.append(FlaxTopPLogitsWarper(top_p=top_p, min_tokens_to_keep=1))
return warpers
def _get_logits_processor(
self,
no_repeat_ngram_size: int,
min_length: int,
max_length: int,
eos_token_id: int,
forced_bos_token_id: int,
forced_eos_token_id: int,
) -> FlaxLogitsProcessorList:
"""
This class returns a :obj:`~transformers.FlaxLogitsProcessorList` list object that contains all relevant
:obj:`~transformers.FlaxLogitsProcessor` instances used to modify the scores of the language model head.
"""
processors = FlaxLogitsProcessorList()
# init warp parameters
no_repeat_ngram_size = (
no_repeat_ngram_size
if no_repeat_ngram_size is not None
else self.config.mbart_config.no_repeat_ngram_size
)
min_length = (
min_length
if min_length is not None
else self.config.mbart_config.min_length
)
eos_token_id = (
eos_token_id
if eos_token_id is not None
else self.config.mbart_config.eos_token_id
)
forced_bos_token_id = (
forced_bos_token_id
if forced_bos_token_id is not None
else self.config.mbart_config.forced_bos_token_id
)
forced_eos_token_id = (
forced_eos_token_id
if forced_eos_token_id is not None
else self.config.mbart_config.forced_eos_token_id
)
# the following idea is largely copied from this PR: https://github.com/huggingface/transformers/pull/5420/files
# all samplers can be found in `generation_utils_samplers.py`
if min_length is not None and eos_token_id is not None and min_length > -1:
processors.append(FlaxMinLengthLogitsProcessor(min_length, eos_token_id))
if forced_bos_token_id is not None:
processors.append(FlaxForcedBOSTokenLogitsProcessor(forced_bos_token_id))
if forced_eos_token_id is not None:
processors.append(
FlaxForcedEOSTokenLogitsProcessor(max_length, forced_eos_token_id)
)
return processors
def _greedy_search(
self,
input_ids: None,
max_length: Optional[int] = None,
pad_token_id: Optional[int] = None,
eos_token_id: Optional[int] = None,
logits_processor: Optional[FlaxLogitsProcessorList] = None,
trace: bool = True,
params: Optional[Dict[str, jax_xla.DeviceArray]] = None,
model_kwargs: Optional[Dict[str, jax_xla.DeviceArray]] = None,
):
# init values
max_length = (
max_length
if max_length is not None
else self.config.mbart_config.max_length
)
pad_token_id = (
pad_token_id
if pad_token_id is not None
else self.config.mbart_config.pad_token_id
)
eos_token_id = (
eos_token_id
if eos_token_id is not None
else self.config.mbart_config.eos_token_id
)
batch_size, cur_len = input_ids.shape
eos_token_id = jnp.array(eos_token_id)
pad_token_id = jnp.array(pad_token_id)
cur_len = jnp.array(cur_len)
# per batch-item holding current token in loop.
sequences = jnp.full((batch_size, max_length), pad_token_id, dtype=jnp.int32)
sequences = lax.dynamic_update_slice(sequences, input_ids, (0, 0))
# per batch-item state bit indicating if sentence has finished.
is_sent_finished = jnp.zeros((batch_size,), dtype=jnp.bool_)
# For Seq2Seq generation, we only need to use the decoder instead of the whole model in generation loop
# and pass it the `encoder_outputs`, which are part of the `model_kwargs`.
model = self.decode if self.config.is_encoder_decoder else self
# initialize model specific kwargs
model_kwargs = self.prepare_inputs_for_generation(
input_ids, max_length, **model_kwargs
)
# initialize state
state = GreedyState(
cur_len=cur_len,
sequences=sequences,
running_token=input_ids,
is_sent_finished=is_sent_finished,
model_kwargs=model_kwargs,
)
def greedy_search_cond_fn(state):
"""state termination condition fn."""
has_reached_max_length = state.cur_len == max_length
all_sequence_finished = jnp.all(state.is_sent_finished)
finish_generation = jnp.logical_or(
has_reached_max_length, all_sequence_finished
)
return ~finish_generation
def greedy_search_body_fn(state):
"""state update fn."""
model_outputs = model(
state.running_token, params=params, **state.model_kwargs
)
logits = model_outputs.logits[:, -1]
# apply min_length, ...
logits = logits_processor(state.sequences, logits, state.cur_len)
next_token = jnp.argmax(logits, axis=-1)
next_is_sent_finished = state.is_sent_finished | (
next_token == eos_token_id
)
next_token = (
next_token * ~next_is_sent_finished
+ pad_token_id * next_is_sent_finished
)
next_token = next_token[:, None]
next_sequences = lax.dynamic_update_slice(
state.sequences, next_token, (0, state.cur_len)
)
next_model_kwargs = self.update_inputs_for_generation(
model_outputs, state.model_kwargs
)
return GreedyState(
cur_len=state.cur_len + 1,
sequences=next_sequences,
running_token=next_token,
is_sent_finished=next_is_sent_finished,
model_kwargs=next_model_kwargs,
)
# The very first prompt often has sequence length > 1, so run outside of `lax.while_loop` to comply with TPU
if input_ids.shape[1] > 1:
state = greedy_search_body_fn(state)
if not trace:
state = self._run_loop_in_debug(
greedy_search_cond_fn, greedy_search_body_fn, state
)
else:
state = lax.while_loop(greedy_search_cond_fn, greedy_search_body_fn, state)
return FlaxGreedySearchOutput(sequences=state.sequences)
def _sample(
self,
input_ids: None,
max_length: Optional[int] = None,
pad_token_id: Optional[int] = None,
eos_token_id: Optional[int] = None,
prng_key: Optional[jax_xla.DeviceArray] = None,
logits_processor: Optional[FlaxLogitsProcessorList] = None,
logits_warper: Optional[FlaxLogitsProcessorList] = None,
trace: bool = True,
params: Optional[Dict[str, jax_xla.DeviceArray]] = None,
model_kwargs: Optional[Dict[str, jax_xla.DeviceArray]] = None,
):
# init values
max_length = (
max_length
if max_length is not None
else self.config.mbart_config.max_length
)
pad_token_id = (
pad_token_id
if pad_token_id is not None
else self.config.mbart_config.pad_token_id
)
eos_token_id = (
eos_token_id
if eos_token_id is not None
else self.config.mbart_config.eos_token_id
)
prng_key = prng_key if prng_key is not None else jax.random.PRNGKey(0)
batch_size, cur_len = input_ids.shape
eos_token_id = jnp.array(eos_token_id)
pad_token_id = jnp.array(pad_token_id)
cur_len = jnp.array(cur_len)
# per batch-item holding current token in loop.
sequences = jnp.full((batch_size, max_length), pad_token_id, dtype=jnp.int32)
sequences = lax.dynamic_update_slice(sequences, input_ids, (0, 0))
# per batch-item state bit indicating if sentence has finished.
is_sent_finished = jnp.zeros((batch_size,), dtype=jnp.bool_)
# For Seq2Seq generation, we only need to use the decoder instead of the whole model in generation loop
# and pass it the `encoder_outputs`, which are part of the `model_kwargs`.
model = self.decode if self.config.is_encoder_decoder else self
# initialize model specific kwargs
model_kwargs = self.prepare_inputs_for_generation(
input_ids, max_length, **model_kwargs
)
# initialize state
state = SampleState(
cur_len=cur_len,
sequences=sequences,
running_token=input_ids,
is_sent_finished=is_sent_finished,
prng_key=prng_key,
model_kwargs=model_kwargs,
)
def sample_search_cond_fn(state):
"""state termination condition fn."""
has_reached_max_length = state.cur_len == max_length
all_sequence_finished = jnp.all(state.is_sent_finished)
finish_generation = jnp.logical_or(
has_reached_max_length, all_sequence_finished
)
return ~finish_generation
def sample_search_body_fn(state):
"""state update fn."""
prng_key, prng_key_next = jax.random.split(state.prng_key)
model_outputs = model(
state.running_token, params=params, **state.model_kwargs
)
logits = model_outputs.logits[:, -1]
# apply min_length, ...
logits = logits_processor(state.sequences, logits, state.cur_len)
# apply top_k, top_k, temperature
logits = logits_warper(logits, logits, state.cur_len)
next_token = jax.random.categorical(
prng_key, model_outputs.logits[:, -1], axis=-1
)
next_is_sent_finished = state.is_sent_finished | (
next_token == eos_token_id
)
next_token = (
next_token * ~next_is_sent_finished
+ pad_token_id * next_is_sent_finished
)
next_token = next_token[:, None]
next_sequences = lax.dynamic_update_slice(
state.sequences, next_token, (0, state.cur_len)
)
next_model_kwargs = self.update_inputs_for_generation(
model_outputs, state.model_kwargs
)
return SampleState(
cur_len=state.cur_len + 1,
sequences=next_sequences,
running_token=next_token,
is_sent_finished=next_is_sent_finished,
model_kwargs=next_model_kwargs,
prng_key=prng_key_next,
)
# The very first prompt often has sequence length > 1, so run outside of `lax.while_loop` to comply with TPU
if input_ids.shape[1] > 1:
state = sample_search_body_fn(state)
if not trace:
state = self._run_loop_in_debug(
sample_search_cond_fn, sample_search_body_fn, state
)
else:
state = lax.while_loop(sample_search_cond_fn, sample_search_body_fn, state)
return FlaxSampleOutput(sequences=state.sequences)
def _beam_search(
self,
input_ids: None,
max_length: Optional[int] = None,
pad_token_id: Optional[int] = None,
eos_token_id: Optional[int] = None,
length_penalty: Optional[float] = None,
early_stopping: Optional[bool] = None,
logits_processor: Optional[FlaxLogitsProcessorList] = None,
trace: bool = True,
params: Optional[Dict[str, jax_xla.DeviceArray]] = None,
model_kwargs: Optional[Dict[str, jax_xla.DeviceArray]] = None,
):
"""
This beam search function is heavily inspired by Flax's official example:
https://github.com/google/flax/blob/master/examples/wmt/train.py#L254
"""
def flatten_beam_dim(tensor):
"""Flattens the first two dimensions of a non-scalar array."""
# ignore scalars (e.g. cache index)
if tensor.ndim == 0:
return tensor
return tensor.reshape(
(tensor.shape[0] * tensor.shape[1],) + tensor.shape[2:]
)
def unflatten_beam_dim(tensor, batch_size, num_beams):
"""Unflattens the first, flat batch*beam dimension of a non-scalar array."""
# ignore scalars (e.g. cache index)
if tensor.ndim == 0:
return tensor
return tensor.reshape((batch_size, num_beams) + tensor.shape[1:])
def gather_beams(nested, beam_indices, batch_size, new_num_beams):
"""
Gathers the beam slices indexed by beam_indices into new beam array.
"""
batch_indices = jnp.reshape(
jnp.arange(batch_size * new_num_beams) // new_num_beams,
(batch_size, new_num_beams),
)
def gather_fn(tensor):
# ignore scalars (e.g. cache index)
if tensor.ndim == 0:
return tensor
else:
return tensor[batch_indices, beam_indices]
return jax.tree_map(gather_fn, nested)
# init values
max_length = (
max_length
if max_length is not None
else self.config.mbart_config.max_length
)
pad_token_id = (
pad_token_id
if pad_token_id is not None
else self.config.mbart_config.pad_token_id
)
eos_token_id = (
eos_token_id
if eos_token_id is not None
else self.config.mbart_config.eos_token_id
)
length_penalty = (
length_penalty
if length_penalty is not None
else self.config.mbart_config.length_penalty
)
early_stopping = (
early_stopping
if early_stopping is not None
else self.config.mbart_config.early_stopping
)
batch_size, num_beams, cur_len = input_ids.shape
eos_token_id = jnp.array(eos_token_id)
pad_token_id = jnp.array(pad_token_id)
cur_len = jnp.array(cur_len)
# per batch,beam-item holding current token in loop.
sequences = jnp.full(
(batch_size, num_beams, max_length), pad_token_id, dtype=jnp.int32
)
running_sequences = jnp.full(
(batch_size, num_beams, max_length), pad_token_id, dtype=jnp.int32
)
running_sequences = lax.dynamic_update_slice(sequences, input_ids, (0, 0, 0))
# per batch,beam-item state bit indicating if sentence has finished.
is_sent_finished = jnp.zeros((batch_size, num_beams), dtype=jnp.bool_)
# per batch,beam-item score, logprobs
running_scores = jnp.tile(
jnp.array([0.0] + [np.array(-1.0e7)] * (num_beams - 1)), [batch_size, 1]
)
scores = jnp.ones((batch_size, num_beams)) * np.array(-1.0e7)
# For Seq2Seq generation, we only need to use the decoder instead of the whole model in generation loop
# and pass it the `encoder_outputs`, which are part of the `model_kwargs`.
model = self.decode if self.config.is_encoder_decoder else self
# flatten beam dim
if "encoder_outputs" in model_kwargs:
model_kwargs["encoder_outputs"]["last_hidden_state"] = flatten_beam_dim(
model_kwargs["encoder_outputs"]["last_hidden_state"]
)
if "attention_mask" in model_kwargs:
model_kwargs["attention_mask"] = flatten_beam_dim(
model_kwargs["attention_mask"]
)
# initialize model specific kwargs
model_kwargs = self.prepare_inputs_for_generation(
flatten_beam_dim(input_ids), max_length, **model_kwargs
)
# initialize state
state = BeamSearchState(
cur_len=cur_len,
running_sequences=running_sequences,
running_scores=running_scores,
sequences=sequences,
scores=scores,
is_sent_finished=is_sent_finished,
model_kwargs=model_kwargs,
)
def beam_search_cond_fn(state):
"""beam search state termination condition fn."""
# 1. is less than max length?
not_max_length_yet = state.cur_len < max_length
# 2. can the new beams still improve?
best_running_score = state.running_scores[:, -1:] / (
max_length ** length_penalty
)
worst_finished_score = jnp.where(
state.is_sent_finished,
jnp.min(state.scores, axis=1, keepdims=True),
np.array(-1.0e7),
)
improvement_still_possible = jnp.all(
worst_finished_score < best_running_score
)
# 3. is there still a beam that has not finished?
still_open_beam = ~(jnp.all(state.is_sent_finished) & early_stopping)
return not_max_length_yet & still_open_beam & improvement_still_possible
def beam_search_body_fn(state):
"""beam search state update fn."""
# 1. Forward current tokens
# Collect the current position slice along length to feed the fast
# autoregressive decoder model. Flatten the beam dimension into batch
# dimension for feeding into the model.
# unflatten beam dimension
# Unflatten beam dimension in attention cache arrays
input_token = flatten_beam_dim(
lax.dynamic_slice(
state.running_sequences,
(0, 0, state.cur_len - 1),
(batch_size, num_beams, 1),
)
)
model_outputs = model(input_token, params=params, **state.model_kwargs)
logits = unflatten_beam_dim(
model_outputs.logits[:, 0], batch_size, num_beams
)
cache = jax.tree_map(
lambda tensor: unflatten_beam_dim(tensor, batch_size, num_beams),
model_outputs.past_key_values,
)
# 2. Compute log probs
# get log probabilities from logits,
# process logits with processors (*e.g.* min_length, ...), and
# add new logprobs to existing running logprobs scores.
log_probs = jax.nn.log_softmax(logits)
log_probs = logits_processor(
flatten_beam_dim(running_sequences),
flatten_beam_dim(log_probs),
state.cur_len,
)
log_probs = unflatten_beam_dim(log_probs, batch_size, num_beams)
log_probs = log_probs + jnp.expand_dims(state.running_scores, axis=2)
vocab_size = log_probs.shape[2]
log_probs = log_probs.reshape((batch_size, num_beams * vocab_size))
# 3. Retrieve top-K
# Each item in batch has num_beams * vocab_size candidate sequences.
# For each item, get the top 2*k candidates with the highest log-
# probabilities. We gather the top 2*K beams here so that even if the best
# K sequences reach EOS simultaneously, we have another K sequences
# remaining to continue the live beam search.
# Gather the top 2*K scores from _all_ beams.
# Gather 2*k top beams.
# Recover the beam index by floor division.
# Recover token id by modulo division and expand Id array for broadcasting.
# Update sequences for the 2*K top-k new sequences.
beams_to_keep = 2 * num_beams
topk_log_probs, topk_indices = lax.top_k(log_probs, k=beams_to_keep)
topk_beam_indices = topk_indices // vocab_size
topk_running_sequences = gather_beams(
state.running_sequences, topk_beam_indices, batch_size, beams_to_keep
)
topk_ids = jnp.expand_dims(topk_indices % vocab_size, axis=2)
topk_sequences = lax.dynamic_update_slice(
topk_running_sequences, topk_ids, (0, 0, state.cur_len)
)
# 4. Check which sequences have ended
# Update current sequences:
# Did any of these sequences reach an end marker?
# To prevent these just finished sequences from being added to the current sequences
# set of active beam search sequences, set their log probs to a very large
# negative value.
did_topk_just_finished = topk_sequences[:, :, state.cur_len] == eos_token_id
topk_log_probs = topk_log_probs + did_topk_just_finished * np.array(-1.0e7)
# 5. Get running sequences scores for next
# Determine the top k beam indices (from top 2*k beams) from log probs
# and gather top k beams (from top 2*k beams).
next_topk_indices = jnp.flip(
lax.top_k(topk_log_probs, k=num_beams)[1], axis=1
)
next_running_sequences, next_running_scores = gather_beams(
[topk_sequences, topk_log_probs],
next_topk_indices,
batch_size,
num_beams,
)
# 6. Process topk logits
# Further process log probs:
# - add length penalty
# - make sure no scores can be added anymore if beam is full
# - make sure still running sequences cannot be chosen as finalized beam
topk_log_probs = topk_log_probs / (state.cur_len ** length_penalty)
beams_in_batch_are_full = (
jnp.broadcast_to(
state.is_sent_finished.all(axis=-1, keepdims=True),
did_topk_just_finished.shape,
)
& early_stopping
)
add_penalty = ~did_topk_just_finished | beams_in_batch_are_full
topk_log_probs += add_penalty * np.array(-1.0e7)
# 7. Get scores, sequences, is sentence finished for next.
# Combine sequences, scores, and flags along the beam dimension and compare
# new finished sequence scores to existing finished scores and select the
# best from the new set of beams
merged_sequences = jnp.concatenate(
[state.sequences, topk_sequences], axis=1
)
merged_scores = jnp.concatenate([state.scores, topk_log_probs], axis=1)
merged_is_sent_finished = jnp.concatenate(
[state.is_sent_finished, did_topk_just_finished], axis=1
)
topk_merged_indices = jnp.flip(
lax.top_k(merged_scores, k=num_beams)[1], axis=1
)
next_sequences, next_scores, next_is_sent_finished = gather_beams(
[merged_sequences, merged_scores, merged_is_sent_finished],
topk_merged_indices,
batch_size,
num_beams,
)
# 8. Update model kwargs.
# Determine the top k beam indices from the original set of all beams.
# With these, gather the top k beam-associated caches.
next_running_indices = gather_beams(
topk_beam_indices, next_topk_indices, batch_size, num_beams
)
next_cache = gather_beams(
cache, next_running_indices, batch_size, num_beams
)
model_outputs["past_key_values"] = jax.tree_map(
lambda x: flatten_beam_dim(x), next_cache
)
next_model_kwargs = self.update_inputs_for_generation(
model_outputs, state.model_kwargs
)
return BeamSearchState(
cur_len=state.cur_len + 1,
running_scores=next_running_scores,
running_sequences=next_running_sequences,
scores=next_scores,
sequences=next_sequences,
is_sent_finished=next_is_sent_finished,
model_kwargs=next_model_kwargs,
)
# The very first prompt often has sequence length > 1, so run outside of `lax.while_loop` to comply with TPU
state = beam_search_body_fn(state)
if not trace:
state = self._run_loop_in_debug(
beam_search_cond_fn, beam_search_body_fn, state
)
else:
state = lax.while_loop(beam_search_cond_fn, beam_search_body_fn, state)
# Account for the edge-case where there are no finished sequences for a
# particular batch item. If so, return running sequences for that batch item.
none_finished = jnp.any(state.is_sent_finished, axis=1)
sequences = jnp.where(
none_finished[:, None, None], state.sequences, state.running_sequences
)
scores = jnp.where(none_finished[:, None], state.scores, state.running_scores)
# take best beam for each batch
sequences = sequences[:, -1]
scores = scores[:, -1]
return FlaxBeamSearchOutput(sequences=sequences, scores=scores)
|