File size: 4,334 Bytes
c6d338c
 
 
 
be6f31c
c6d338c
be6f31c
5329452
 
8136881
 
 
 
 
 
 
 
 
 
 
 
28efd24
8136881
 
 
c6d338c
 
 
 
 
 
8136881
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6d338c
 
 
 
 
 
 
2b4c283
c6d338c
 
 
 
 
 
 
 
28efd24
c6d338c
 
 
 
2b4c283
c6d338c
28863a3
c6d338c
 
 
2b4c283
c6d338c
e9acb28
c6d338c
 
 
 
 
 
0d55d70
66d7cd7
 
 
0d55d70
 
 
c6d338c
 
 
 
 
b3e804f
c6d338c
 
88b054e
c6d338c
 
 
 
 
 
 
 
28efd24
c6d338c
 
28efd24
c6d338c
28efd24
 
e9acb28
28efd24
e9acb28
d427812
54ddfdf
50e2ceb
 
d427812
 
 
 
e9acb28
 
7f74f8c
e9acb28
7f74f8c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import json
import requests
from mtranslate import translate
from prompts import PROMPT_LIST
import streamlit as st
import random

token = st.secrets["flax_community_token"]
headers = {"Authorization": f"Bearer {token}"}
MODELS = {
    "GPT-2 Small": {
        "url": "https://api-inference.huggingface.co/models/flax-community/gpt2-small-indonesian"
    },
    "GPT-2 Medium": {
        "url": "https://api-inference.huggingface.co/models/flax-community/gpt2-medium-indonesian"
    },
}


def query(payload, model_name):
    data = json.dumps(payload)
    print("model url:", MODELS[model_name]["url"])
    response = requests.request("POST", MODELS[model_name]["url"], headers=headers, data=data)
    return json.loads(response.content.decode("utf-8"))


def process(text: str,
            model_name: str,
            max_len: int,
            temp: float,
            top_k: int,
            top_p: float):

    payload = {
        "inputs": text,
        "parameters": {
            "max_new_tokens": max_len,
            "top_k": top_k,
            "top_p": top_p,
            "temperature": temp,
            "repetition_penalty": 2.0,
        },
        "options": {
            "use_cache": True,
        }
    }
    return query(payload, model_name)

st.set_page_config(page_title="Indonesian GPT-2 Demo")

st.title("Indonesian GPT-2")

st.sidebar.subheader("Configurable parameters")

max_len = st.sidebar.number_input(
    "Maximum length",
    value=100,
    help="The maximum length of the sequence to be generated."
)

temp = st.sidebar.slider(
    "Temperature",
    value=1.0,
    min_value=0.1,
    max_value=100.0,
    help="The value used to module the next token probabilities."
)

top_k = st.sidebar.number_input(
    "Top k",
    value=10,
    help="The number of highest probability vocabulary tokens to keep for top-k-filtering."
)

top_p = st.sidebar.number_input(
    "Top p",
    value=0.95,
    help=" If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation."
)

do_sample = st.sidebar.selectbox('Sampling?', (True, False), help="Whether or not to use sampling; use greedy decoding otherwise.")

st.markdown(
    """
    This demo uses the [small](https://huggingface.co/flax-community/gpt2-small-indonesian) and 
    [medium](https://huggingface.co/flax-community/gpt2-medium-indonesian) Indonesian GPT2 model 
    trained on the Indonesian [Oscar](https://huggingface.co/datasets/oscar), [MC4](https://huggingface.co/datasets/mc4) 
    and [Wikipedia](https://huggingface.co/datasets/wikipedia) dataset. We created it as part of the 
    [Huggingface JAX/Flax event](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/).
    """
)

model_name = st.selectbox('Model',(['GPT-2 Small', 'GPT-2 Medium']))

ALL_PROMPTS = list(PROMPT_LIST.keys())+["Custom"]
prompt = st.selectbox('Please choose a predefined prompt or create your custom text.', ALL_PROMPTS, index=len(ALL_PROMPTS)-1)

if prompt == "Custom":
    prompt_box = "Enter your text here"
else:
    prompt_box = random.choice(PROMPT_LIST[prompt])

text = st.text_area("Enter text", prompt_box)

if st.button("Run"):
    with st.spinner(text="Getting results..."):
        st.subheader("Result")
        print(f"maxlen:{max_len}, temp:{temp}, top_k:{top_k}, top_p:{top_p}")
        result = process(text=text,
                         model_name=model_name,
                         max_len=int(max_len),
                         temp=temp,
                         top_k=int(top_k),
                         top_p=float(top_p))

        print("result:", result)
        if "error" in result:
            if type(result["error"]) is str:
                st.write(f'{result["error"]}.', end=" ")
                if "estimated_time" in result:
                    st.write(f'Please try it again in about {result["estimated_time"]:.0f} seconds')
            else:
                if type(result["error"]) is list:
                    for error in result["error"]:
                        st.write(f'{error}')
        else:
            result = result[0]["generated_text"]
            st.write(result.replace("\n", "  \n"))
            st.text("English translation")
            st.write(translate(result, "en", "id").replace("\n", "  \n"))