File size: 3,719 Bytes
c6d338c
 
 
 
be6f31c
c6d338c
be6f31c
0326f75
8136881
 
 
 
 
 
 
 
 
 
 
 
28efd24
8136881
 
 
c6d338c
 
 
 
 
 
8136881
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6d338c
 
 
 
 
 
 
2b4c283
c6d338c
 
 
 
 
 
 
 
28efd24
c6d338c
 
 
 
2b4c283
c6d338c
 
 
 
 
2b4c283
c6d338c
e9acb28
c6d338c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28efd24
c6d338c
 
28efd24
c6d338c
28efd24
 
e9acb28
28efd24
e9acb28
d427812
 
 
 
 
 
e9acb28
 
2b4c283
 
 
e9acb28
2b4c283
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import json
import requests
from mtranslate import translate
from prompts import PROMPT_LIST
import streamlit as st
import random

headers = {}
MODELS = {
    "GPT-2 Small": {
        "url": "https://api-inference.huggingface.co/models/flax-community/gpt2-small-indonesian"
    },
    "GPT-2 Medium": {
        "url": "https://api-inference.huggingface.co/models/flax-community/gpt2-medium-indonesian"
    },
}


def query(payload, model_name):
    data = json.dumps(payload)
    print("model url:", MODELS[model_name]["url"])
    response = requests.request("POST", MODELS[model_name]["url"], headers=headers, data=data)
    return json.loads(response.content.decode("utf-8"))


def process(text: str,
            model_name: str,
            max_len: int,
            temp: float,
            top_k: int,
            top_p: float):

    payload = {
        "inputs": text,
        "parameters": {
            "max_new_tokens": max_len,
            "top_k": top_k,
            "top_p": top_p,
            "temperature": temp,
            "repetition_penalty": 2.0,
        },
        "options": {
            "use_cache": True,
        }
    }
    return query(payload, model_name)

st.set_page_config(page_title="Indonesian GPT-2 Demo")

st.title("Indonesian GPT-2")

st.sidebar.subheader("Configurable parameters")

max_len = st.sidebar.number_input(
    "Maximum length",
    value=100,
    help="The maximum length of the sequence to be generated."
)

temp = st.sidebar.slider(
    "Temperature",
    value=1.0,
    min_value=0.1,
    max_value=100.0,
    help="The value used to module the next token probabilities."
)

top_k = st.sidebar.number_input(
    "Top k",
    value=50,
    help="The number of highest probability vocabulary tokens to keep for top-k-filtering."
)

top_p = st.sidebar.number_input(
    "Top p",
    value=0.95,
    help=" If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation."
)

do_sample = st.sidebar.selectbox('Sampling?', (True, False), help="Whether or not to use sampling; use greedy decoding otherwise.")

st.markdown(
    """Indonesian GPT-2 demo. Part of the [Huggingface JAX/Flax event](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/)."""
)

model_name = st.selectbox('Model',(['GPT-2 Small', 'GPT-2 Medium']))

ALL_PROMPTS = list(PROMPT_LIST.keys())+["Custom"]
prompt = st.selectbox('Prompt', ALL_PROMPTS, index=len(ALL_PROMPTS)-1)

if prompt == "Custom":
    prompt_box = "Enter your text here"
else:
    prompt_box = random.choice(PROMPT_LIST[prompt])

text = st.text_area("Enter text", prompt_box)

if st.button("Run"):
    with st.spinner(text="Getting results..."):
        st.subheader("Result")
        print(f"maxlen:{max_len}, temp:{temp}, top_k:{top_k}, top_p:{top_p}")
        result = process(text=text,
                         model_name=model_name,
                         max_len=int(max_len),
                         temp=temp,
                         top_k=int(top_k),
                         top_p=float(top_p))

        print("result:", result)
        if "error" in result:
            if type(result["error"]) is str:
                st.write(f'{result["error"]}. Please try it again in about {result["estimated_time"]:.0f} seconds')
            else:
                if type(result["error"]) is list:
                    for error in result["error"]:
                        st.write(f'{error}')
        else:
            result = result[0]["generated_text"]
            st.write(result.replace("\
", "  \
"))
            st.text("English translation")
            st.write(translate(result, "en", "id").replace("\
", "  \
"))