Spaces:
Runtime error
Runtime error
File size: 3,719 Bytes
c6d338c be6f31c c6d338c be6f31c 0326f75 8136881 28efd24 8136881 c6d338c 8136881 c6d338c 2b4c283 c6d338c 28efd24 c6d338c 2b4c283 c6d338c 2b4c283 c6d338c e9acb28 c6d338c 28efd24 c6d338c 28efd24 c6d338c 28efd24 e9acb28 28efd24 e9acb28 d427812 e9acb28 2b4c283 e9acb28 2b4c283 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
import json
import requests
from mtranslate import translate
from prompts import PROMPT_LIST
import streamlit as st
import random
headers = {}
MODELS = {
"GPT-2 Small": {
"url": "https://api-inference.huggingface.co/models/flax-community/gpt2-small-indonesian"
},
"GPT-2 Medium": {
"url": "https://api-inference.huggingface.co/models/flax-community/gpt2-medium-indonesian"
},
}
def query(payload, model_name):
data = json.dumps(payload)
print("model url:", MODELS[model_name]["url"])
response = requests.request("POST", MODELS[model_name]["url"], headers=headers, data=data)
return json.loads(response.content.decode("utf-8"))
def process(text: str,
model_name: str,
max_len: int,
temp: float,
top_k: int,
top_p: float):
payload = {
"inputs": text,
"parameters": {
"max_new_tokens": max_len,
"top_k": top_k,
"top_p": top_p,
"temperature": temp,
"repetition_penalty": 2.0,
},
"options": {
"use_cache": True,
}
}
return query(payload, model_name)
st.set_page_config(page_title="Indonesian GPT-2 Demo")
st.title("Indonesian GPT-2")
st.sidebar.subheader("Configurable parameters")
max_len = st.sidebar.number_input(
"Maximum length",
value=100,
help="The maximum length of the sequence to be generated."
)
temp = st.sidebar.slider(
"Temperature",
value=1.0,
min_value=0.1,
max_value=100.0,
help="The value used to module the next token probabilities."
)
top_k = st.sidebar.number_input(
"Top k",
value=50,
help="The number of highest probability vocabulary tokens to keep for top-k-filtering."
)
top_p = st.sidebar.number_input(
"Top p",
value=0.95,
help=" If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation."
)
do_sample = st.sidebar.selectbox('Sampling?', (True, False), help="Whether or not to use sampling; use greedy decoding otherwise.")
st.markdown(
"""Indonesian GPT-2 demo. Part of the [Huggingface JAX/Flax event](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/)."""
)
model_name = st.selectbox('Model',(['GPT-2 Small', 'GPT-2 Medium']))
ALL_PROMPTS = list(PROMPT_LIST.keys())+["Custom"]
prompt = st.selectbox('Prompt', ALL_PROMPTS, index=len(ALL_PROMPTS)-1)
if prompt == "Custom":
prompt_box = "Enter your text here"
else:
prompt_box = random.choice(PROMPT_LIST[prompt])
text = st.text_area("Enter text", prompt_box)
if st.button("Run"):
with st.spinner(text="Getting results..."):
st.subheader("Result")
print(f"maxlen:{max_len}, temp:{temp}, top_k:{top_k}, top_p:{top_p}")
result = process(text=text,
model_name=model_name,
max_len=int(max_len),
temp=temp,
top_k=int(top_k),
top_p=float(top_p))
print("result:", result)
if "error" in result:
if type(result["error"]) is str:
st.write(f'{result["error"]}. Please try it again in about {result["estimated_time"]:.0f} seconds')
else:
if type(result["error"]) is list:
for error in result["error"]:
st.write(f'{error}')
else:
result = result[0]["generated_text"]
st.write(result.replace("\
", " \
"))
st.text("English translation")
st.write(translate(result, "en", "id").replace("\
", " \
"))
|