Spaces:
Running
Running
File size: 7,462 Bytes
1212a74 a09ea25 1212a74 d054d1b 41b680b 1212a74 a09ea25 1212a74 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
"""
Utilities for processing text.
"""
import requests
from pathlib import Path
from unidecode import unidecode
import re, math, random, html
import ftfy
WIKI_STATS_URL = "https://github.com/borisdayma/wikipedia-word-frequency/raw/feat-update/results/enwiki-20210820-words-frequency.txt"
WIKI_STATS_LOCAL = Path(WIKI_STATS_URL).parts[-1]
# based on wiki word occurence
person_token = [("a person", 282265), ("someone", 121194), ("somebody", 12219)]
temp_token = "xtokx" # avoid repeating chars
def get_wiki_file():
if not Path(WIKI_STATS_LOCAL).exists():
r = requests.get(WIKI_STATS_URL, stream=True)
with open(WIKI_STATS_LOCAL, "wb") as fd:
for chunk in r.iter_content(chunk_size=128):
fd.write(chunk)
return WIKI_STATS_LOCAL
class HashtagProcessor:
# Adapted from wordninja library
# We use our wikipedia word count + a good heuristic to make it work
def __init__(self):
self._word_cost = (
l.split()[0] for l in Path(get_wiki_file()).read_text().splitlines()
)
self._word_cost = {
str(k): math.log(float(i + 1)) for i, k in enumerate(self._word_cost)
}
self._max_word = max(len(x) for x in self._word_cost.keys())
self._SPLIT_RE = re.compile("[^a-zA-Z0-9']+")
def __call__(self, s):
"""Uses dynamic programming to infer the location of spaces in a string without spaces."""
l = [self._split(x) for x in self._SPLIT_RE.split(s)]
return " ".join([item for sublist in l for item in sublist])
def _split(self, s):
# Find the best match for the i first characters, assuming cost has
# been built for the i-1 first characters.
# Returns a pair (match_cost, match_length).
def best_match(i):
candidates = enumerate(reversed(cost[max(0, i - self._max_word) : i]))
return min(
(c + self._word_cost.get(s[i - k - 1 : i].lower(), 9e999), k + 1)
for k, c in candidates
)
# Build the cost array
cost = [0]
for i in range(1, len(s) + 1):
c, k = best_match(i)
cost.append(c)
# Backtrack to recover the minimal-cost string.
out = []
i = len(s)
while i > 0:
c, k = best_match(i)
assert c == cost[i]
newToken = True
if not s[i - k : i] == "'": # ignore a lone apostrophe
if len(out) > 0:
# re-attach split 's and split digits
if out[-1] == "'s" or (
s[i - 1].isdigit() and out[-1][0].isdigit()
): # digit followed by digit
out[-1] = (
s[i - k : i] + out[-1]
) # combine current token with previous token
newToken = False
if newToken:
out.append(s[i - k : i])
i -= k
return reversed(out)
def replace_person_token(t):
"Used for CC12M"
t = re.sub("<person>([,\s]*(and)*[,\s]*<person>)+", " people ", t)
while "<person>" in t:
t = t.replace(
"<person>", f" {random.choices(*tuple(zip(*person_token)))[0]} ", 1
)
return t
def fix_html(t):
# from OpenAI CLIP
return html.unescape(html.unescape(t))
def replace_punctuation_with_commas(t):
return re.sub("""([()[\].,|:;?!=+~\-])""", ",", t)
def simplify_quotes(t):
return re.sub("""['"`]""", ' " ', t)
def merge_quotes(t):
return re.sub('(\s*"+\s*)+', ' " ', t)
def remove_comma_numbers(t):
def _f(t):
return re.sub("(\d),(\d{3})", r"\1\2", t)
return _f(_f(t))
def pre_process_dot_numbers(t):
return re.sub("(\d)\.(\d)", fr"\1{temp_token}dot{temp_token}\2", t)
def post_process_dot_numbers(t):
return re.sub(f"{temp_token}dot{temp_token}", ".", t)
def pre_process_quotes(t):
# allows quotes only for 's, 't, 'd, 'm, 'll, 're, 've
return re.sub(
r"'(?=([stdm]|(ll)|(re)|(ve)|(ll))\b)", fr"{temp_token}quote{temp_token}", t
)
def post_process_quotes(t):
return re.sub(f"{temp_token}quote{temp_token}", "'", t)
def merge_commas(t):
return re.sub("(\s*,+\s*)+", ", ", t)
def add_space_after_commas(t):
return re.sub(",", ", ", t)
def handle_special_chars(t):
"Handle special characters"
# replace "-" with a space when between words without space
t = re.sub("([a-zA-Z])-([a-zA-Z])", r"\1 \2", t)
# always add space around &
return re.sub("&", " & ", t)
def expand_hashtags(t, hashtag_processor):
"Remove # and try to split words"
return re.sub("#(\w+)", lambda m: hashtag_processor(m.group(1)), t)
_re_ignore_chars = """[_#\/\\%]"""
def ignore_chars(t):
"Ignore useless characters"
return re.sub(_re_ignore_chars, " ", t)
def remove_extra_spaces(t):
"Remove extra spaces (including \t and \n)"
return re.sub("\s+", " ", t)
def remove_repeating_chars(t):
"If the same character is present 4+ times (not 3 because of roman 'VIII'), replace with single instance"
return re.sub(r"(\D)(\1{3,})", r"\1", t)
def remove_urls(t):
return re.sub(r"http\S+", "", t)
def remove_html_tags(t):
return re.sub("<[^<]+?>", "", t)
def remove_first_last_commas(t):
t = t.strip()
t = t[:-1] if t and t[-1] == "," else t
t = t[1:] if t and t[0] == "," else t
return t.strip()
def remove_wiki_ref(t):
t = re.sub(r"\A\s*\[\d+\]", "", t)
return re.sub(r"\[\d+\]\s*\Z", "", t)
class TextNormalizer:
"Normalize text"
def __init__(self):
self._hashtag_processor = HashtagProcessor()
def __call__(self, t, clip=False):
# fix some characters
t = ftfy.fix_text(t)
# fix html
t = fix_html(t)
if not clip:
# decode and simplify text: see unidecode library
t = unidecode(t)
# lower case
t = t.lower()
# replace <PERSON> (for CC12M)
t = replace_person_token(t)
# remove wiki reference (for WIT)
t = remove_wiki_ref(t)
# remove html tags
t = remove_html_tags(t)
# remove urls
t = remove_urls(t)
# remove commas in numbers
t = remove_comma_numbers(t)
if not clip:
# handle dots in numbers and quotes - Part 1
t = pre_process_dot_numbers(t)
t = pre_process_quotes(t)
# handle special characters
t = handle_special_chars(t)
# handle hashtags
t = expand_hashtags(t, self._hashtag_processor)
# ignore useless characters
t = ignore_chars(t)
# simplify quotes
t = simplify_quotes(t)
# all punctuation becomes commas
t = replace_punctuation_with_commas(t)
# handle dots in numbers and quotes - Part 2
t = post_process_dot_numbers(t)
t = post_process_quotes(t)
# handle repeating characters
t = remove_repeating_chars(t)
# merge commas
t = merge_commas(t)
# merge quotes
t = merge_quotes(t)
# remove multiple spaces
t = remove_extra_spaces(t)
# remove first and last comma
t = remove_first_last_commas(t)
# always start with a space
return f" {t}" if not clip else t
|