File size: 8,728 Bytes
95d2faf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "bf8fb38a",
   "metadata": {},
   "source": [
    "# Data Pipeline"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "9b83dcb9",
   "metadata": {},
   "outputs": [],
   "source": [
    "from dataclasses import dataclass, field\n",
    "from pathlib import Path\n",
    "\n",
    "import datasets\n",
    "from datasets import Dataset, load_dataset\n",
    "import numpy as np\n",
    "\n",
    "from transformers import BartTokenizer\n",
    "\n",
    "from tqdm import tqdm\n",
    "\n",
    "import jax\n",
    "import jax.numpy as jnp\n",
    "\n",
    "from flax.training.common_utils import shard"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a661a89e",
   "metadata": {},
   "source": [
    "File containing image paths, captions and VQGAN-encoded indices."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "0e84e889",
   "metadata": {},
   "outputs": [],
   "source": [
    "datafile = '/data/CC12M/images-encoded-10000.tsv'   # 9999 encoded images from CC12M"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7fdc640b",
   "metadata": {},
   "source": [
    "TODO: generate train/test splits if necessary."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "cc6789b4",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Using custom data configuration default-91833df78e844785\n",
      "Reusing dataset csv (/home/pedro/.cache/huggingface/datasets/csv/default-91833df78e844785/0.0.0/e138af468cb14e747fb46a19c787ffcfa5170c821476d20d5304287ce12bbc23)\n"
     ]
    }
   ],
   "source": [
    "dataset = load_dataset('csv', delimiter='\\t', data_files=[datafile])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "f3ed4919",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "DatasetDict({\n",
       "    train: Dataset({\n",
       "        features: ['image_file', 'caption', 'encoding'],\n",
       "        num_rows: 9999\n",
       "    })\n",
       "})"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "dataset"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "a70c7354",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Dataset({\n",
       "    features: ['image_file', 'caption', 'encoding'],\n",
       "    num_rows: 9999\n",
       "})"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "dataset = dataset[\"train\"]\n",
    "dataset"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a73454cf",
   "metadata": {},
   "source": [
    "We don't really need the `image_file` field for training. We'll drop it during pre-processing because we won't be able to numericalize it to a `jnp.array`, which would be required in JAX."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7c0fa992",
   "metadata": {},
   "source": [
    "## Preprocessing"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a0e36582",
   "metadata": {},
   "source": [
    "The `encoding` field contains a string representation of the encoded indices. We'll convert them to numbers. We also need to tokenize the captions."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "d46f6ac5",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Setting padding=\"max_length\" as we need fixed length inputs for jitted functions\n",
    "max_length = 256   # Read from data_args.max_source_length\n",
    "tokenizer = BartTokenizer.from_pretrained('facebook/bart-large-cnn')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "4cac6643",
   "metadata": {},
   "outputs": [],
   "source": [
    "def preprocess_function(examples):\n",
    "    inputs = examples[\"caption\"]\n",
    "#     inputs = [prefix + inp for inp in inputs]   # Do we need this?\n",
    "    model_inputs = tokenizer(\n",
    "        inputs, max_length=max_length, padding=\"max_length\", truncation=True, return_tensors=\"np\"\n",
    "    )\n",
    "\n",
    "    model_inputs[\"eval_encoding\"] = [eval(indices) for indices in examples['encoding']]\n",
    "\n",
    "    return model_inputs"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "e6a4cb91",
   "metadata": {},
   "outputs": [],
   "source": [
    "num_workers = 48     # We have 96 processors in the TPU\n",
    "column_names = dataset.column_names\n",
    "dataset = dataset.map(preprocess_function,\n",
    "                      remove_columns=column_names,\n",
    "                      batched=True,\n",
    "                      num_proc=48\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "a9b1b467",
   "metadata": {},
   "outputs": [],
   "source": [
    "def data_loader(rng: jax.random.PRNGKey, dataset: Dataset, batch_size: int, shuffle: bool = False):\n",
    "    \"\"\"\n",
    "    Returns batches of size `batch_size` from truncated `dataset`, sharded over all local devices.\n",
    "    Shuffle batches if `shuffle` is `True`.\n",
    "    \"\"\"\n",
    "    steps_per_epoch = len(dataset) // batch_size\n",
    "\n",
    "    if shuffle:\n",
    "        batch_idx = jax.random.permutation(rng, len(dataset))\n",
    "    else:\n",
    "        batch_idx = jnp.arange(len(dataset))\n",
    "\n",
    "    batch_idx = batch_idx[: steps_per_epoch * batch_size]  # Skip incomplete batch.\n",
    "    batch_idx = batch_idx.reshape((steps_per_epoch, batch_size))\n",
    "\n",
    "    for idx in batch_idx:\n",
    "        batch = dataset[idx]        \n",
    "        batch = {k: jnp.array(v) for k, v in batch.items()}\n",
    "        batch = shard(batch)\n",
    "        yield batch"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "0a628505",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "INFO:absl:Starting the local TPU driver.\n",
      "INFO:absl:Unable to initialize backend 'tpu_driver': Not found: Unable to find driver in registry given worker: local://\n",
      "INFO:absl:Unable to initialize backend 'gpu': Not found: Could not find registered platform with name: \"cuda\". Available platform names are: Interpreter TPU Host\n"
     ]
    }
   ],
   "source": [
    "rng = jax.random.PRNGKey(23)  # Use training_args.seed\n",
    "batch_size = 64    # Per device\n",
    "super_batch_size = batch_size * jax.device_count()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "b3a5ce7d",
   "metadata": {},
   "outputs": [],
   "source": [
    "loader = data_loader(rng, dataset, batch_size=super_batch_size)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "67aa8f9c",
   "metadata": {},
   "outputs": [],
   "source": [
    "superbatch = next(iter(loader))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "7cd99402",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "dict_keys(['attention_mask', 'eval_encoding', 'input_ids'])"
      ]
     },
     "execution_count": 13,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "superbatch.keys()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "652a4a9e",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "8"
      ]
     },
     "execution_count": 14,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "len(superbatch[\"eval_encoding\"])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "id": "de7de4e8",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(8, 64, 256)"
      ]
     },
     "execution_count": 15,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "superbatch[\"eval_encoding\"].shape"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "cfe23a71",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.10"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}