Spaces:
Running
Running
File size: 7,016 Bytes
6b0d541 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
#!/usr/bin/env python
# coding: utf-8
# Uncomment to run on cpu
#import os
#os.environ["JAX_PLATFORM_NAME"] = "cpu"
import random
import jax
import flax.linen as nn
from flax.training.common_utils import shard
from flax.jax_utils import replicate, unreplicate
from transformers.models.bart.modeling_flax_bart import *
from transformers import BartTokenizer, FlaxBartForConditionalGeneration
import requests
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
from dalle_mini.vqgan_jax.modeling_flax_vqgan import VQModel
import gradio as gr
# TODO: set those args in a config file
OUTPUT_VOCAB_SIZE = 16384 + 1 # encoded image token space + 1 for bos
OUTPUT_LENGTH = 256 + 1 # number of encoded tokens + 1 for bos
BOS_TOKEN_ID = 16384
BASE_MODEL = 'flax-community/dalle-mini'
class CustomFlaxBartModule(FlaxBartModule):
def setup(self):
# we keep shared to easily load pre-trained weights
self.shared = nn.Embed(
self.config.vocab_size,
self.config.d_model,
embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
dtype=self.dtype,
)
# a separate embedding is used for the decoder
self.decoder_embed = nn.Embed(
OUTPUT_VOCAB_SIZE,
self.config.d_model,
embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
dtype=self.dtype,
)
self.encoder = FlaxBartEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared)
# the decoder has a different config
decoder_config = BartConfig(self.config.to_dict())
decoder_config.max_position_embeddings = OUTPUT_LENGTH
decoder_config.vocab_size = OUTPUT_VOCAB_SIZE
self.decoder = FlaxBartDecoder(decoder_config, dtype=self.dtype, embed_tokens=self.decoder_embed)
class CustomFlaxBartForConditionalGenerationModule(FlaxBartForConditionalGenerationModule):
def setup(self):
self.model = CustomFlaxBartModule(config=self.config, dtype=self.dtype)
self.lm_head = nn.Dense(
OUTPUT_VOCAB_SIZE,
use_bias=False,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
)
self.final_logits_bias = self.param("final_logits_bias", self.bias_init, (1, OUTPUT_VOCAB_SIZE))
class CustomFlaxBartForConditionalGeneration(FlaxBartForConditionalGeneration):
module_class = CustomFlaxBartForConditionalGenerationModule
# create our model
# FIXME: Save tokenizer to hub so we can load from there
tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
model = CustomFlaxBartForConditionalGeneration.from_pretrained(BASE_MODEL)
model.config.force_bos_token_to_be_generated = False
model.config.forced_bos_token_id = None
model.config.forced_eos_token_id = None
vqgan = VQModel.from_pretrained("flax-community/vqgan_f16_16384")
def custom_to_pil(x):
x = np.clip(x, 0., 1.)
x = (255*x).astype(np.uint8)
x = Image.fromarray(x)
if not x.mode == "RGB":
x = x.convert("RGB")
return x
def generate(input, rng, params):
return model.generate(
**input,
max_length=257,
num_beams=1,
do_sample=True,
prng_key=rng,
eos_token_id=50000,
pad_token_id=50000,
params=params,
)
def get_images(indices, params):
return vqgan.decode_code(indices, params=params)
def plot_images(images):
fig = plt.figure(figsize=(40, 20))
columns = 4
rows = 2
plt.subplots_adjust(hspace=0, wspace=0)
for i in range(1, columns*rows +1):
fig.add_subplot(rows, columns, i)
plt.imshow(images[i-1])
plt.gca().axes.get_yaxis().set_visible(False)
plt.show()
def stack_reconstructions(images):
w, h = images[0].size[0], images[0].size[1]
img = Image.new("RGB", (len(images)*w, h))
for i, img_ in enumerate(images):
img.paste(img_, (i*w,0))
return img
p_generate = jax.pmap(generate, "batch")
p_get_images = jax.pmap(get_images, "batch")
bart_params = replicate(model.params)
vqgan_params = replicate(vqgan.params)
# ## CLIP Scoring
from transformers import CLIPProcessor, FlaxCLIPModel
clip = FlaxCLIPModel.from_pretrained("openai/clip-vit-base-patch32")
print("Initialize FlaxCLIPModel")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
print("Initialize CLIPProcessor")
def hallucinate(prompt, num_images=64):
prompt = [prompt] * jax.device_count()
inputs = tokenizer(prompt, return_tensors='jax', padding="max_length", truncation=True, max_length=128).data
inputs = shard(inputs)
all_images = []
for i in range(num_images // jax.device_count()):
key = random.randint(0, 1e7)
rng = jax.random.PRNGKey(key)
rngs = jax.random.split(rng, jax.local_device_count())
indices = p_generate(inputs, rngs, bart_params).sequences
indices = indices[:, :, 1:]
images = p_get_images(indices, vqgan_params)
images = np.squeeze(np.asarray(images), 1)
for image in images:
all_images.append(custom_to_pil(image))
return all_images
def clip_top_k(prompt, images, k=8):
inputs = processor(text=prompt, images=images, return_tensors="np", padding=True)
outputs = clip(**inputs)
logits = outputs.logits_per_text
scores = np.array(logits[0]).argsort()[-k:][::-1]
return [images[score] for score in scores]
def captioned_strip(images, caption):
increased_h = 0 if caption is None else 48
w, h = images[0].size[0], images[0].size[1]
img = Image.new("RGB", (len(images)*w, h + increased_h))
for i, img_ in enumerate(images):
img.paste(img_, (i*w, increased_h))
if caption is not None:
draw = ImageDraw.Draw(img)
font = ImageFont.truetype("/usr/share/fonts/truetype/liberation2/LiberationMono-Bold.ttf", 40)
draw.text((20, 3), caption, (255,255,255), font=font)
return img
def run_inference(prompt, num_images=64, num_preds=8):
images = hallucinate(prompt, num_images=num_images)
images = clip_top_k(prompt, images, k=num_preds)
predictions_strip = captioned_strip(images, None)
return predictions_strip
gr.Interface(run_inference,
inputs=[gr.inputs.Textbox(label='Prompt')], #, gr.inputs.Slider(1,64,1,8, label='Candidates to generate'), gr.inputs.Slider(1,8,1,1, label='Best predictions to show')],
outputs=gr.outputs.Image(label='Generated image'),
title='DALLE-mini - HuggingFace Community Week',
description='This is a demo of the DALLE-mini model trained with Jax/Flax on TPU v3-8s during the HuggingFace Community Week',
article="<p style='text-align: center'> DALLE-mini by Boris Dayma et al. | <a href='https://github.com/borisdayma/dalle-mini'>GitHub</a></p>",
layout='vertical',
theme='huggingface',
examples=[['an armchair in the shape of an avocado']],
server_port=8999).launch(share=True)
|