File size: 45,305 Bytes
46cb01f
 
0952927
46cb01f
 
 
 
 
 
 
 
 
 
 
 
 
0952927
46cb01f
 
 
5173ec7
50498e6
803c7df
d209547
46cb01f
34cf91c
6523a6d
d209547
46cb01f
032f623
46cb01f
 
 
 
0081723
46cb01f
 
f044cb8
d209547
49597a2
14abe8c
d209547
46cb01f
14abe8c
50498e6
0081723
da9367c
f254058
d209547
1bfc1b5
46cb01f
85c1b8e
0081723
 
 
 
 
 
46cb01f
9f5e879
da9367c
803c7df
3f0364c
 
46cb01f
 
 
 
 
 
 
803c7df
46cb01f
290e443
 
 
46cb01f
 
0a77f72
 
 
adbdff9
0a77f72
 
803c7df
 
a96f44d
803c7df
a96f44d
46cb01f
 
 
 
adbdff9
46cb01f
 
fa5b058
 
 
34cf91c
fa5b058
 
 
 
4cb21dd
 
 
 
 
fa5b058
1bb3269
fa5b058
 
34cf91c
 
 
 
 
 
 
 
 
 
 
50498e6
 
 
 
 
 
 
 
 
 
 
1c4e839
d368fb6
1c4e839
 
d368fb6
 
1c4e839
 
 
 
 
 
 
 
 
 
 
46cb01f
 
 
 
 
 
 
 
 
a96f44d
 
 
 
46cb01f
3f0364c
a96f44d
 
 
 
 
85c1b8e
a96f44d
 
 
 
85c1b8e
adbdff9
 
 
46cb01f
 
 
adbdff9
 
 
85c1b8e
0a77f72
901ff72
0a77f72
a96f44d
46cb01f
901ff72
eac6890
 
 
 
 
901ff72
 
 
 
 
 
46cb01f
 
 
adbdff9
46cb01f
 
 
 
 
adbdff9
46cb01f
 
 
 
 
87fac28
46cb01f
 
 
a96f44d
87fac28
 
 
46cb01f
85c1b8e
 
 
 
 
 
 
85748ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adbdff9
85748ef
 
 
1bb3269
 
85748ef
a2bf605
 
 
1bb3269
a2bf605
85748ef
 
 
 
 
adbdff9
85748ef
 
5f954fc
 
 
85748ef
 
 
 
adbdff9
 
 
 
 
0b87452
adbdff9
 
89cf9ea
85748ef
adbdff9
 
89cf9ea
85748ef
 
 
 
 
 
 
89cf9ea
25862e8
 
89cf9ea
8149924
 
 
 
adbdff9
 
 
89cf9ea
25862e8
 
89cf9ea
adbdff9
 
8b72ed8
89cf9ea
adbdff9
 
 
a2bf605
 
 
 
 
 
 
e2781bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85748ef
e2781bc
 
 
85748ef
 
 
 
 
 
 
 
 
 
498559f
1c44a7d
a96f44d
85748ef
1c44a7d
46cb01f
eac6890
85748ef
eac6890
 
 
 
85748ef
274ba73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0081723
 
 
 
 
 
 
fa5b058
 
adbdff9
 
 
 
 
 
a2bf605
 
274ba73
 
 
 
 
 
 
4c87adf
274ba73
 
0081723
 
 
 
adbdff9
46cb01f
 
69cf636
6523a6d
 
 
46cb01f
 
1b757dc
5f28cd2
 
1b757dc
5f28cd2
1b757dc
5f28cd2
 
 
 
 
a96f44d
1b757dc
49597a2
1b757dc
7143593
 
 
 
5f28cd2
1b757dc
5f28cd2
1b757dc
 
 
 
 
5f28cd2
19070ab
 
46cb01f
85748ef
a96f44d
 
 
46cb01f
 
 
a96f44d
 
 
46cb01f
 
 
 
803c7df
46cb01f
 
803c7df
46cb01f
 
803c7df
46cb01f
 
 
 
 
 
 
 
 
 
9bf9397
85c1b8e
0fe3e72
 
 
a96f44d
46cb01f
fdf7698
274ba73
 
 
 
 
fdf7698
074c5e1
5b533b5
 
274ba73
 
 
5b533b5
 
074c5e1
fa5b058
 
 
5173ec7
 
fa5b058
 
803c7df
fa5b058
 
772415c
fa5b058
 
 
9f522b8
 
cc34d07
772415c
fa5b058
 
 
 
 
 
 
46cb01f
5f954fc
5173ec7
 
5f954fc
4aced93
5173ec7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34cf91c
 
 
032f623
 
 
 
 
 
5f954fc
 
 
 
 
46cb01f
85c1b8e
1bb3269
46cb01f
 
0952927
46cb01f
 
2d07559
b7c7458
0952927
 
 
 
 
 
 
5b533b5
274ba73
0952927
 
 
 
a96f44d
0952927
85c1b8e
6523a6d
0952927
5b533b5
 
6523a6d
0df810d
 
 
53dade7
46cb01f
7cfe576
 
 
 
 
 
 
 
 
 
 
 
 
34cf91c
7cfe576
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46cb01f
e2781bc
 
 
 
 
 
 
34cf91c
 
 
 
 
 
e2781bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc4734f
 
e2781bc
 
 
 
46cb01f
 
adbdff9
0b87452
 
 
89cf9ea
adbdff9
 
0b87452
 
8149924
adbdff9
0b87452
 
 
 
 
cc34d07
 
 
 
0b87452
 
89cf9ea
0b87452
 
adbdff9
0b87452
032f623
 
 
 
 
 
 
0b87452
adbdff9
600ad79
69cf636
adbdff9
 
600ad79
 
adbdff9
 
 
 
 
 
 
46cb01f
cc34d07
 
225b6ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc34d07
225b6ff
 
 
cc34d07
 
032f623
cc34d07
032f623
cc34d07
 
0081723
 
cc34d07
0081723
cc34d07
0081723
 
 
 
 
 
fa5b058
3d43591
 
 
49597a2
 
 
 
 
3d43591
 
49597a2
 
3d43591
cc34d07
fa5b058
3d43591
cc34d07
 
 
 
 
 
 
 
 
 
 
 
 
032f623
cc34d07
 
34cf91c
1c4e839
cc34d07
 
34cf91c
 
 
 
cc34d07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
032f623
cc34d07
 
 
 
 
225b6ff
46cb01f
f254058
 
 
7b5868f
f254058
46cb01f
9db361a
 
d61405b
46cb01f
 
 
6523a6d
0952927
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46cb01f
7b5868f
 
 
 
 
 
 
 
 
14abe8c
a96f44d
2d07559
a96f44d
2d07559
46cb01f
 
2d07559
7b5868f
2b7f5f1
7b5868f
0952927
 
 
7b5868f
0952927
 
7b5868f
0952927
2b7f5f1
 
 
0952927
2b7f5f1
 
 
 
 
 
7b5868f
0952927
2d07559
7b5868f
0952927
7b5868f
0952927
 
 
 
 
 
 
7b5868f
 
 
 
 
0952927
7b5868f
0952927
7b5868f
 
 
 
 
 
 
 
 
 
 
 
2d07559
7b5868f
 
6523a6d
 
7b5868f
6523a6d
274ba73
6523a6d
46cb01f
a96f44d
 
274ba73
a96f44d
6523a6d
 
46cb01f
 
5f28cd2
0952927
 
 
 
 
 
 
 
 
 
 
 
 
 
1bb3269
 
5173ec7
1bb3269
 
 
 
 
 
 
 
14abe8c
46cb01f
 
0081723
 
7b5868f
0081723
 
 
 
 
5f28cd2
0081723
 
46cb01f
5f28cd2
 
 
 
 
7cfe576
 
 
46cb01f
566d5f2
46cb01f
32dc2d8
0952927
0df810d
0952927
0df810d
 
 
14abe8c
a96f44d
 
 
 
 
 
 
0952927
1bb3269
 
0952927
1bb3269
 
 
0952927
1bb3269
14abe8c
 
5f28cd2
32dc2d8
14abe8c
 
 
 
32dc2d8
19070ab
5f28cd2
566d5f2
32dc2d8
0d94b71
32dc2d8
 
19070ab
566d5f2
 
6523a6d
d449092
50498e6
 
 
 
 
 
 
 
 
 
0081723
6e89e9e
50498e6
6e89e9e
 
 
aecf3a7
50498e6
 
 
 
 
 
 
1c4e839
50498e6
 
 
aecf3a7
a30dbd3
0081723
50498e6
1c4e839
50498e6
 
 
 
 
aecf3a7
fa5b058
 
 
 
50498e6
fa5b058
50498e6
 
 
 
fa5b058
 
 
 
 
1c4e839
 
fa5b058
 
 
 
 
d368fb6
 
 
50498e6
 
 
 
 
 
 
 
 
 
 
 
fa5b058
 
 
1c4e839
 
fa5b058
 
 
 
 
d368fb6
 
 
fa5b058
50498e6
5b533b5
fa5b058
5b533b5
0081723
 
 
 
5f28cd2
 
0081723
 
 
 
f254058
0081723
 
 
 
 
 
 
 
 
 
 
 
 
 
6523a6d
2b7f5f1
f254058
 
 
 
0952927
f254058
 
 
 
 
14abe8c
 
f254058
0081723
14abe8c
 
566d5f2
0081723
5f28cd2
 
566d5f2
0081723
14abe8c
0081723
a96f44d
0081723
 
a96f44d
0081723
 
5f28cd2
 
566d5f2
0081723
 
 
566d5f2
0081723
 
46cb01f
0081723
 
754f876
1c44a7d
46cb01f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021-2022 The HuggingFace & DALL·E Mini Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Training DALL·E Mini.
Script adapted from run_summarization_flax.py
"""

import copy
import io
import logging
import os
import sys
import tempfile
import time
from dataclasses import asdict, dataclass, field
from pathlib import Path
from typing import Any, Callable, NamedTuple, Optional

import datasets
import jax
import jax.numpy as jnp
import numpy as np
import optax
import transformers
import wandb
from datasets import Dataset
from distributed_shampoo import GraftingType, distributed_shampoo
from flax.core.frozen_dict import FrozenDict, freeze
from flax.serialization import from_bytes, to_bytes
from flax.training import train_state
from flax.training.common_utils import onehot
from google.cloud import storage
from jax.experimental import PartitionSpec, maps
from jax.experimental.compilation_cache import compilation_cache as cc
from jax.experimental.pjit import pjit, with_sharding_constraint
from tqdm import tqdm
from transformers import HfArgumentParser

from dalle_mini.data import Dataset
from dalle_mini.model import (
    DalleBart,
    DalleBartConfig,
    DalleBartTokenizer,
    set_partitions,
)

cc.initialize_cache("./jax_cache", max_cache_size_bytes=5 * 2**30)

logger = logging.getLogger(__name__)


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
    """

    model_name_or_path: Optional[str] = field(
        default=None,
        metadata={
            "help": "The model checkpoint for weights initialization. "
            "Don't set if you want to train a model from scratch. "
            "W&B artifact references are supported in addition to the sources supported by `PreTrainedModel`."
        },
    )
    config_name: Optional[str] = field(
        default=None,
        metadata={
            "help": "Pretrained config name or path if not the same as model_name_or_path"
        },
    )
    tokenizer_name: Optional[str] = field(
        default=None,
        metadata={
            "help": "Pretrained tokenizer name or path if not the same as model_name_or_path"
        },
    )
    dtype: Optional[str] = field(
        default="float32",
        metadata={
            "help": "Floating-point format in which the computations will be performed (not the model weights). Choose one of `[float32, float16, bfloat16]`."
        },
    )
    restore_state: Optional[bool] = field(
        default=False,
        metadata={
            "help": "Restore optimizer and training state. Can be True (will retrieve associated wandb artifact), a local directory or a Google bucket path."
        },
    )

    def __post_init__(self):
        if self.tokenizer_name is None:
            self.tokenizer_name == self.model_name_or_path
            assert (
                self.tokenizer_name is not None
            ), "Tokenizer name or model name/path needs to be specified"
        if self.restore_state:
            assert self.model_name_or_path is not None and (
                "/model-" in self.model_name_or_path
            ), "Restoring state only available with W&B artifact reference"

    def get_metadata(self):
        if self.restore_state:
            if jax.process_index() == 0:
                artifact = wandb.run.use_artifact(self.model_name_or_path)
            else:
                artifact = wandb.Api().artifact(self.model_name_or_path)
            return artifact.metadata
        else:
            return dict()

    def get_opt_state(self):
        with tempfile.TemporaryDirectory() as tmp_dir:  # avoid multiple artifact copies
            if self.restore_state is True:
                # wandb artifact
                state_artifact = self.model_name_or_path.replace(
                    "/model-", "/state-", 1
                )
                if jax.process_index() == 0:
                    artifact = wandb.run.use_artifact(state_artifact)
                else:
                    artifact = wandb.Api().artifact(state_artifact)
                if artifact.metadata.get("bucket_path"):
                    # we will read directly file contents
                    self.restore_state = artifact.metadata["bucket_path"]
                else:
                    artifact_dir = artifact.download(tmp_dir)
                    self.restore_state = str(Path(artifact_dir) / "opt_state.msgpack")

            if self.restore_state.startswith("gs://"):
                bucket_path = Path(self.restore_state[5:]) / "opt_state.msgpack"
                bucket, blob_name = str(bucket_path).split("/", 1)
                client = storage.Client()
                bucket = client.bucket(bucket)
                blob = bucket.blob(blob_name)
                return blob.download_as_bytes()

            with Path(self.restore_state).open("rb") as f:
                return f.read()


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    text_column: Optional[str] = field(
        default="caption",
        metadata={
            "help": "The name of the column in the datasets containing the full texts (for summarization)."
        },
    )
    encoding_column: Optional[str] = field(
        default="encoding",
        metadata={
            "help": "The name of the column in the datasets containing the image encodings."
        },
    )
    dataset_repo_or_path: str = field(
        default=None,
        metadata={"help": "The dataset repository containing encoded files."},
    )
    train_file: Optional[str] = field(
        default=None,
        metadata={
            "help": "The input training data file (glob & braceexpand acceptable)."
        },
    )
    validation_file: Optional[str] = field(
        default=None,
        metadata={
            "help": "An optional input evaluation data file (glob & braceexpand acceptable)."
        },
    )
    # data loading should not be a bottleneck so we use "streaming" mode by default
    streaming: Optional[bool] = field(
        default=True,
        metadata={"help": "Whether to stream the dataset."},
    )
    use_auth_token: Optional[bool] = field(
        default=False,
        metadata={
            "help": "Whether to use the authentication token for private datasets."
        },
    )
    shard_by_host: Optional[bool] = field(
        default=False,
        metadata={
            "help": "Whether to shard data files by host in multi-host environments."
        },
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of training examples."
        },
    )
    max_eval_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of evaluation examples."
        },
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={
            "help": "The number of processes to use for the preprocessing. Not used in streaming mode."
        },
    )
    overwrite_cache: bool = field(
        default=False,
        metadata={
            "help": "Overwrite the cached training and evaluation sets. Not used in streaming mode."
        },
    )
    # default seed of None ensures we don't repeat the same items if script was interrupted during an epoch
    seed_dataset: int = field(
        default=None,
        metadata={
            "help": "Random seed for the dataset that will be set at the beginning of training."
        },
    )

    def __post_init__(self):
        if self.dataset_repo_or_path is None:
            raise ValueError("Need a dataset repository or path.")


@dataclass
class TrainingArguments:
    """
    Arguments pertaining to training parameters.
    """

    output_dir: str = field(
        metadata={
            "help": "The output directory where the model predictions and checkpoints will be written."
        },
    )
    overwrite_output_dir: bool = field(
        default=False,
        metadata={
            "help": (
                "Overwrite the content of the output directory. "
                "Use this to continue training if output_dir points to a checkpoint directory."
            )
        },
    )

    do_train: bool = field(default=False, metadata={"help": "Whether to run training."})
    do_eval: bool = field(
        default=False, metadata={"help": "Whether to run eval on the validation set."}
    )

    per_device_train_batch_size: int = field(
        default=8,
        metadata={"help": "Batch size per data parallel device for training."},
    )
    per_device_eval_batch_size: Optional[int] = field(
        default=None,
        metadata={
            "help": "Batch size per data parallel device for evaluation. Same as training batch size if not set."
        },
    )

    gradient_accumulation_steps: int = field(
        default=1,
        metadata={
            "help": "Number of updates steps to accumulate before performing an update pass."
        },
    )
    gradient_checkpointing: bool = field(
        default=False, metadata={"help": "Use gradient checkpointing."}
    )

    learning_rate: float = field(
        default=5e-5, metadata={"help": "The initial learning rate."}
    )
    optim: str = field(
        default="distributed_shampoo",
        metadata={
            "help": 'The optimizer to use. Can be "distributed_shampoo" (default), "adam" or "adafactor"'
        },
    )
    beta1: float = field(
        default=0.9,
        metadata={"help": "Beta1 for Adam & Distributed Shampoo."},
    )
    beta2: float = field(
        default=0.999,
        metadata={"help": "Beta2 for for Adam & Distributed Shampoo."},
    )
    adam_epsilon: float = field(
        default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."}
    )
    max_grad_norm: float = field(
        default=1.0, metadata={"help": "Max gradient norm for Adafactor."}
    )
    block_size: int = field(
        default=1024,
        metadata={"help": "Chunked size for large layers with Distributed Shampoo."},
    )
    start_preconditioning_step: int = field(
        default=100,
        metadata={"help": "Number of steps before starting to update preconditioner."},
    )
    preconditioning_compute_steps: int = field(
        default=10, metadata={"help": "Number of steps to update preconditioner."}
    )
    skip_preconditioning_dim_size_gt: int = field(
        default=4096,
        metadata={"help": "Max size for preconditioning with Distributed Shampoo."},
    )
    optim_quantized: bool = field(
        default=False,
        metadata={
            "help": "Whether to quantize optimizer (only supported with Distributed Shampoo)."
        },
    )

    num_train_epochs: int = field(
        default=3, metadata={"help": "Total number of training epochs to perform."}
    )

    warmup_steps: int = field(
        default=0, metadata={"help": "Linear warmup over warmup_steps."}
    )
    lr_decay: str = field(
        default=None,
        metadata={
            "help": "Decay to be used in the learning rate scheduler. Can be None (default), linear or exponential."
        },
    )
    lr_transition_steps: int = field(
        default=None,
        metadata={
            "help": "Number of transition steps associated with learning rate decay when using exponential decay."
        },
    )
    lr_decay_rate: float = field(
        default=None,
        metadata={
            "help": "Decay rate associated with learning rate when using exponential decay."
        },
    )
    lr_staircase: bool = field(
        default=False,
        metadata={
            "help": "Whether to use staircase or continuous learning rate when using exponential decay."
        },
    )

    logging_steps: int = field(
        default=40, metadata={"help": "Log every X updates steps."}
    )
    eval_steps: int = field(
        default=400, metadata={"help": "Run an evaluation every X steps."}
    )
    save_steps: int = field(
        default=4000, metadata={"help": "Save checkpoint every X updates steps."}
    )
    log_model: bool = field(
        default=False,
        metadata={"help": "Log model to wandb at `save_steps` frequency."},
    )

    seed_model: int = field(
        default=42,
        metadata={
            "help": "Random seed for the model that will be set at the beginning of training."
        },
    )

    wandb_entity: Optional[str] = field(
        default=None,
        metadata={"help": "The wandb entity to use (for teams)."},
    )
    wandb_project: str = field(
        default="dalle-mini",
        metadata={"help": "The name of the wandb project."},
    )
    wandb_job_type: str = field(
        default="Seq2Seq",
        metadata={"help": "The name of the wandb job type."},
    )

    assert_TPU_available: bool = field(
        default=False,
        metadata={"help": "Verify that TPU is not in use."},
    )

    mp_devices: Optional[int] = field(
        default=1,
        metadata={
            "help": "Number of devices required for model parallelism. The other dimension of available devices is used for data parallelism."
        },
    )

    dp_devices: int = field(init=False)

    def __post_init__(self):
        assert self.optim in [
            "distributed_shampoo",
            "adam",
            "adafactor",
        ], f"Selected optimizer not supported: {self.optim}"
        if self.per_device_eval_batch_size is None:
            self.per_device_eval_batch_size = self.per_device_train_batch_size
        if (
            os.path.exists(self.output_dir)
            and os.listdir(self.output_dir)
            and self.do_train
            and not self.overwrite_output_dir
        ):
            raise ValueError(
                f"Output directory ({self.output_dir}) already exists and is not empty."
                "Use --overwrite_output_dir to overcome."
            )
        assert (
            jax.device_count() % self.mp_devices == 0
        ), f"Number of available devices ({jax.device_count()} must be divisible by number of devices used for model parallelism ({self.mp_devices})."
        self.dp_devices = jax.device_count() // self.mp_devices


class TrainState(train_state.TrainState):
    dropout_rng: jnp.ndarray = None
    epoch: int = 0
    train_time: float = 0.0  # total time the model trained
    train_samples: int = 0  # number of samples seen


class MetricsLogger:
    def __init__(self, step):
        self.step = step
        self.time = time.perf_counter()
        self.state_dict = {}

    def update_state_metrics(self, state):
        """Update internal state metrics (logged at each call to be used as x-axis)"""
        self.state_dict = {
            f'train/{k.split("_")[-1]}': getattr(state, k)
            for k in ["step", "epoch", "train_time", "train_samples"]
        }
        # timing metrics
        new_step = int(state.step)
        new_time = time.perf_counter()
        if new_step > self.step:
            time_per_step = (new_time - self.time) / (new_step - self.step)
            self.step = new_step
            self.time = new_time
            self.state_dict["train/time_per_step"] = time_per_step

    def log(self, metrics, prefix=None):
        if jax.process_index() == 0:
            log_metrics = {
                f"{prefix}/{k}" if prefix is not None else k: v
                for k, v in metrics.items()
            }
            wandb.log({**log_metrics, **self.state_dict})


def main():
    # See all possible arguments by passing the --help flag to this script.
    parser = HfArgumentParser(
        (ModelArguments, DataTrainingArguments, TrainingArguments)
    )
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(
            json_file=os.path.abspath(sys.argv[1])
        )
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    # Setup logging, we only want one process per machine to log things on the screen.
    logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
    if jax.process_index() == 0:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()

    # Set the verbosity to info of the Transformers logger (on main process only):
    logger.info(f"Training/evaluation parameters {training_args}")

    # Load dataset
    dataset = Dataset(
        **asdict(data_args),
        do_train=training_args.do_train,
        do_eval=training_args.do_eval,
    )

    logger.info(f"Local TPUs: {jax.local_device_count()}")
    logger.info(f"Global TPUs: {jax.device_count()}")
    if training_args.assert_TPU_available:
        assert (
            jax.local_device_count() == 8
        ), "TPUs in use, please check running processes"

    # Set up wandb run
    if jax.process_index() == 0:
        wandb.init(
            entity=training_args.wandb_entity,
            project=training_args.wandb_project,
            job_type=training_args.wandb_job_type,
            config=parser.parse_args(),
        )

    # Set up our new model config
    if model_args.config_name:
        config = DalleBartConfig.from_pretrained(model_args.config_name)
        # initializing params with gradient checkpointing create issues
        config.gradient_checkpointing = False
    else:
        config = None

    # Load or create new model
    if model_args.model_name_or_path:
        model = DalleBart.from_pretrained(
            model_args.model_name_or_path,
            config=config,
            seed=training_args.seed_model,
            dtype=getattr(jnp, model_args.dtype),
            abstract_init=True,
            load_on_cpu=True,
        )
    else:
        model = DalleBart(
            config,
            seed=training_args.seed_model,
            dtype=getattr(jnp, model_args.dtype),
            load_on_cpu=True,
        )

    # update model config per training args
    # Done after initialization of weights to avoid issues with remat
    # This is still considered correctly during training as function is pjitted
    model.config.gradient_checkpointing = training_args.gradient_checkpointing

    # eval model cannot use remat
    eval_config = copy.deepcopy(model.config)
    eval_config.gradient_checkpointing = False

    if training_args.gradient_checkpointing:
        eval_model = DalleBart(
            eval_config,
            seed=training_args.seed_model,
            dtype=getattr(jnp, model_args.dtype),
            abstract_init=True,
            load_on_cpu=True,
        )
        del eval_model._params
        eval_fn = eval_model.__call__
    else:
        eval_fn = model.__call__

    # get model metadata
    model_metadata = model_args.get_metadata()

    # get PartitionSpec for model params (required to be a dict)
    param_spec = set_partitions(model.params)

    # convert params to frozen dict
    model._params = freeze(model.params)

    # Load tokenizer
    tokenizer = DalleBartTokenizer.from_pretrained(
        model_args.tokenizer_name, use_fast=True
    )

    # Preprocessing the datasets.
    # We need to normalize and tokenize inputs and targets.
    dataset.preprocess(tokenizer=tokenizer, config=model.config)

    # Initialize our training
    dropout_rng = jax.random.PRNGKey(training_args.seed_model)

    # Store some constant
    num_epochs = training_args.num_train_epochs
    # batch size
    batch_size_per_node_per_grad_step = (
        training_args.per_device_train_batch_size
        * jax.local_device_count()
        // training_args.mp_devices
    )
    batch_size_per_node = (
        batch_size_per_node_per_grad_step * training_args.gradient_accumulation_steps
    )
    batch_size_per_step = batch_size_per_node * jax.process_count()
    eval_batch_size_per_node = (
        training_args.per_device_eval_batch_size
        * jax.local_device_count()
        // training_args.mp_devices
    )
    eval_batch_size_per_step = eval_batch_size_per_node * jax.process_count()
    len_train_dataset, len_eval_dataset = dataset.length
    steps_per_epoch = (
        len_train_dataset // batch_size_per_step
        if len_train_dataset is not None
        else None
    )
    num_train_steps = (
        steps_per_epoch * num_epochs if steps_per_epoch is not None else None
    )
    num_params = model.num_params

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len_train_dataset}")
    logger.info(f"  Num Epochs = {num_epochs}")
    logger.info(
        f"  Batch size per device = {training_args.per_device_train_batch_size}"
    )
    logger.info(f"  Number of devices = {jax.device_count()}")
    logger.info(
        f"  Gradient accumulation steps = {training_args.gradient_accumulation_steps}"
    )
    logger.info(f"  Batch size per update = {batch_size_per_step}")
    logger.info(f"  Model parameters = {num_params:,}")

    # set up wandb run
    if jax.process_index() == 0:
        # set default x-axis as 'train/step'
        wandb.define_metric("*", step_metric="train/step")

        # add interesting config parameters
        wandb.config.update(
            {
                "len_train_dataset": len_train_dataset,
                "len_eval_dataset": len_eval_dataset,
                "batch_size_per_step": batch_size_per_step,
                "num_params": num_params,
                "num_devices": jax.device_count(),
            }
        )

    # Create learning rate schedule
    def create_learning_rate_fn() -> Callable[[int], jnp.array]:
        """Create the learning rate function."""
        warmup_fn = optax.linear_schedule(
            init_value=0.0,
            end_value=training_args.learning_rate,
            transition_steps=training_args.warmup_steps,
        )
        # offset step when resuming
        if model_metadata.get("step", 0):
            warmup_fn = optax.join_schedules(
                schedules=[optax.constant_schedule(0.0), warmup_fn],
                boundaries=[model_metadata["step"]],
            )
        if training_args.lr_decay is None:
            return warmup_fn
        elif training_args.lr_decay == "linear":
            assert (
                num_train_steps is not None
            ), "linear decay requires knowing the dataset length"
            decay_fn = optax.linear_schedule(
                init_value=training_args.learning_rate,
                end_value=0,
                transition_steps=num_train_steps - training_args.warmup_steps,
            )
        elif training_args.lr_decay == "exponential":
            decay_fn = optax.exponential_decay(
                init_value=training_args.learning_rate,
                transition_steps=training_args.lr_transition_steps,
                decay_rate=training_args.lr_decay_rate,
                staircase=training_args.lr_staircase,
            )
        schedule_fn = optax.join_schedules(
            schedules=[warmup_fn, decay_fn],
            boundaries=[model_metadata.get("step", 0) + training_args.warmup_steps],
        )
        return schedule_fn

    learning_rate_fn = create_learning_rate_fn()

    # create adam optimizer
    if training_args.optim == "distributed_shampoo":
        # parameters from https://github.com/tensorflow/lingvo/blob/03ee9d7cd50764b0424c7c863733c91fc0b053ec/lingvo/jax/optimizers.py#L729
        optimizer = distributed_shampoo(
            learning_rate_fn,
            block_size=training_args.block_size,
            beta1=training_args.beta1,
            beta2=training_args.beta2,
            diagonal_epsilon=1e-10,
            matrix_epsilon=1e-8,
            start_preconditioning_step=training_args.start_preconditioning_step,
            preconditioning_compute_steps=training_args.preconditioning_compute_steps,
            statistics_compute_steps=1,
            best_effort_shape_interpretation=True,
            graft_type=GraftingType.RMSPROP_NORMALIZED,
            nesterov=False,
            exponent_override=0,
            statistics_partition_spec=PartitionSpec(None, "batch", None),
            preconditioner_partition_spec=PartitionSpec("batch", None, None),
            num_devices_for_pjit=training_args.dp_devices,
            shard_optimizer_states=True,
            inverse_failure_threshold=0.1,
            moving_average_for_momentum=True,
            skip_preconditioning_dim_size_gt=training_args.skip_preconditioning_dim_size_gt,
            clip_by_scaled_gradient_norm=None,
            precision=jax.lax.Precision.HIGHEST,
            best_effort_memory_usage_reduction=training_args.optim_quantized,
        )
        # get the real optimizer and helper functions
        update_fn = optimizer.update
        optimizer = optimizer.init(model.params)
        opt_fn = NamedTuple("opt_fn", pspec_fn=Any, shape_and_dtype_fn=Any)(
            optimizer.pspec_fn, optimizer.shape_and_dtype_fn
        )
        optimizer = optax.GradientTransformation(optimizer.init_fn, update_fn)

    elif training_args.optim == "adam":
        optimizer = optax.adamw(
            learning_rate=learning_rate_fn,
            b1=training_args.beta1,
            b2=training_args.beta2,
            eps=training_args.adam_epsilon,
        )
    elif training_args.optim == "adafactor":
        # We use the default parameters here to initialize adafactor,
        # For more details about the parameters please check https://github.com/deepmind/optax/blob/ed02befef9bf81cbbf236be3d2b0e032e9ed4a40/optax/_src/alias.py#L74
        optimizer = optax.adafactor(
            learning_rate=learning_rate_fn,
            clipping_threshold=training_args.max_grad_norm,
        )

    # get PartitionSpec for optimizer state
    def get_opt_state_spec_and_shape(param_spec):
        # get opt_state shape without actual init
        opt_state_shape = jax.eval_shape(optimizer.init, model.params)

        if training_args.optim == "adam":

            def _opt_state_spec_per_leaf(x):
                if isinstance(x, FrozenDict):
                    # variables with same structure as params
                    return param_spec
                else:
                    # other variables such as count
                    return None

            opt_state_spec = jax.tree_map(
                _opt_state_spec_per_leaf,
                opt_state_shape,
                # return None spec for empty elements
                is_leaf=lambda x: isinstance(x, (FrozenDict, optax.EmptyState)),
            )

        elif training_args.optim == "adafactor":
            # factorized state must be replicated (rank different than params)
            opt_state_spec = None

        elif training_args.optim == "distributed_shampoo":
            opt_state_spec = opt_fn.pspec_fn(
                params=model.params,
                params_partition_spec=param_spec,
                partition_spec_for_statistics=PartitionSpec(None, "batch", None),
            )
        else:
            raise NotImplementedError
        return opt_state_spec, opt_state_shape

    opt_state_spec, opt_state_shape = get_opt_state_spec_and_shape(param_spec)

    # create a mesh
    mesh_shape = (training_args.dp_devices, training_args.mp_devices)
    devices = np.asarray(jax.devices()).reshape(*mesh_shape)
    mesh = maps.Mesh(devices, ("batch", "mp"))

    # define state spec
    state_spec = TrainState(
        params=param_spec,
        opt_state=opt_state_spec,
        dropout_rng=None,
        step=None,
        epoch=None,
        train_time=None,
        train_samples=None,
        apply_fn=model.__call__,
        tx=optimizer,
    )

    # create training state
    with maps.mesh(mesh.devices, mesh.axis_names):
        if not model_args.restore_state:

            def init_state(params):
                return TrainState.create(
                    apply_fn=model.__call__,
                    tx=optimizer,
                    params=params,
                    dropout_rng=dropout_rng,
                )

            state = pjit(
                init_state,
                in_axis_resources=(param_spec,),
                out_axis_resources=state_spec,
                donate_argnums=(0,),
            )(model.params)

        else:
            # load opt_state
            opt_state = from_bytes(opt_state_shape, model_args.get_opt_state())

            # restore other attributes
            attr_state = {
                k: model_metadata[k]
                for k in ["step", "epoch", "train_time", "train_samples"]
            }

            def restore_state(params, opt_state):
                return TrainState(
                    apply_fn=model.__call__,
                    tx=optimizer,
                    params=params,
                    opt_state=opt_state,
                    dropout_rng=dropout_rng,
                    **attr_state,
                )

            state = pjit(
                restore_state,
                in_axis_resources=(param_spec, opt_state_spec),
                out_axis_resources=state_spec,
                donate_argnums=(0, 1),
            )(model.params, opt_state)

            # remove opt_state from CPU
            del opt_state

    # free memory
    del model._params, opt_state_spec, opt_state_shape

    # define batch specs
    keys = ["attention_mask", "decoder_input_ids", "input_ids", "labels"]
    batch_spec = freeze({k: PartitionSpec("batch") for k in keys})
    grad_batch_spec = freeze({k: PartitionSpec(None, "batch") for k in keys})

    # label smoothed cross entropy
    def loss_fn(logits, labels):
        loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1]))
        loss = loss.mean()
        return loss

    # Define gradient update step fn
    def train_step(state, batch, delta_time):
        # we reshape to (gradient_accumulation_steps, dp_devices, ...)
        # allows feeding partial batch size per node for full model parallel
        batch = jax.tree_map(
            lambda x: x.reshape(
                (
                    training_args.gradient_accumulation_steps,
                    training_args.dp_devices,
                    training_args.per_device_train_batch_size,
                )
                + x.shape[2:]
            ),
            batch,
        )
        # ensure data is sharded correctly per dp device
        batch = with_sharding_constraint(batch, grad_batch_spec)

        # get a minibatch (one gradient accumulation slice)
        def get_minibatch(batch, grad_idx):
            return jax.tree_map(
                lambda x: jax.lax.dynamic_index_in_dim(x, grad_idx, keepdims=False),
                batch,
            )

        def compute_loss(params, minibatch, dropout_rng):
            # minibatch has dim (batch_size, ...)
            minibatch, labels = minibatch.pop("labels")
            logits = state.apply_fn(
                **minibatch, params=params, dropout_rng=dropout_rng, train=True
            )[0]
            return loss_fn(logits, labels)

        grad_fn = jax.value_and_grad(compute_loss)

        def loss_and_grad(grad_idx, dropout_rng):
            # minibatch at grad_idx, shape (dp_devices, per_device_train_batch_size, ...)
            minibatch = get_minibatch(batch, grad_idx)
            # calculate loss and grads independently per dp_device
            dropout_rng, _ = jax.random.split(dropout_rng)
            # ensure inputs are sharded per device
            minibatch = jax.tree_map(
                lambda x: with_sharding_constraint(x, PartitionSpec("batch")),
                minibatch,
            )
            # only 1 single rng per grad step, let us handle larger batch size
            loss_grads = jax.vmap(grad_fn, in_axes=(None, 0, None), out_axes=(0, 0))(
                state.params, minibatch, dropout_rng
            )
            # ensure outputs are sharded per device
            loss_grads = jax.tree_map(
                lambda x: with_sharding_constraint(x, PartitionSpec("batch")),
                loss_grads,
            )
            # average across all devices
            loss_grads = jax.tree_map(lambda x: jnp.mean(x, axis=0), loss_grads)
            # return loss and grads
            return loss_grads, dropout_rng

        if training_args.gradient_accumulation_steps == 1:
            loss_grad, dropout_rng = loss_and_grad(0, state.dropout_rng)
        else:
            # create initial state for cumul_minibatch_step loop
            init_minibatch_step = (
                (
                    0.0,
                    jax.tree_map(jnp.zeros_like, state.params),
                ),
                state.dropout_rng,
            )

            # accumulate gradients
            def cumul_minibatch_step(grad_idx, cumul_loss_grad_dropout):
                cumul_loss_grad, dropout_rng = cumul_loss_grad_dropout
                loss_grad, dropout_rng = loss_and_grad(grad_idx, dropout_rng)
                cumul_loss_grad = jax.tree_map(jnp.add, cumul_loss_grad, loss_grad)
                return cumul_loss_grad, dropout_rng

            # loop over gradients
            loss_grad, dropout_rng = jax.lax.fori_loop(
                0,
                training_args.gradient_accumulation_steps,
                cumul_minibatch_step,
                init_minibatch_step,
            )
            # sum -> mean
            loss_grad = jax.tree_map(
                lambda x: x / training_args.gradient_accumulation_steps, loss_grad
            )

        # update state
        loss, grads = loss_grad
        state = state.apply_gradients(
            grads=grads,
            dropout_rng=dropout_rng,
            train_time=state.train_time + delta_time,
            train_samples=state.train_samples + batch_size_per_step,
        )

        metrics = {
            "loss": loss,
            "learning_rate": learning_rate_fn(state.step),
        }

        return state, metrics

    # Define eval fn
    def eval_step(state, batch):
        # we reshape to (dp_devices, ...)
        batch = jax.tree_map(
            lambda x: x.reshape(
                (
                    training_args.dp_devices,
                    training_args.per_device_eval_batch_size,
                )
                + x.shape[1:]
            ),
            batch,
        )
        # ensure data is sharded correctly per dp device
        batch = with_sharding_constraint(batch, batch_spec)

        def compute_eval_loss(batch):
            batch, labels = batch.pop("labels")
            logits = eval_fn(**batch, params=state.params, train=False)[0]
            return loss_fn(logits, labels)

        # calculate loss independently per dp_device
        loss = jax.vmap(compute_eval_loss, in_axes=(0,), out_axes=0)(batch)
        # ensure they are sharded over dp devices
        loss = with_sharding_constraint(loss, PartitionSpec("batch"))
        # average across all devices
        loss = jnp.mean(loss)
        return loss

    # Create parallel version of the train and eval step
    p_train_step = pjit(
        train_step,
        in_axis_resources=(state_spec, grad_batch_spec, None),
        out_axis_resources=(state_spec, None),
        donate_argnums=(0,),
    )
    p_eval_step = pjit(
        eval_step,
        in_axis_resources=(state_spec, batch_spec),
        out_axis_resources=None,
    )

    # init variables
    last_time = time.perf_counter()
    train_metrics = None
    step = int(state.step)
    metrics_logger = MetricsLogger(step)
    epochs = tqdm(
        range(state.epoch, num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0
    )

    def run_evaluation():
        # ======================== Evaluating ==============================
        if training_args.do_eval:
            eval_loader = dataset.dataloader("eval", eval_batch_size_per_step)
            eval_steps = (
                len_eval_dataset // eval_batch_size_per_step
                if len_eval_dataset is not None
                else None
            )
            eval_loss = []
            for batch in tqdm(
                eval_loader,
                desc="Evaluating...",
                position=2,
                leave=False,
                total=eval_steps,
            ):
                # need to keep only eval_batch_size_per_node items relevant to the node
                batch = jax.tree_map(
                    lambda x: x.reshape(
                        (jax.process_count(), eval_batch_size_per_node) + x.shape[1:]
                    ),
                    batch,
                )
                batch = jax.tree_map(lambda x: x[jax.process_index()], batch)
                # freeze batch to pass safely to jax transforms
                batch = freeze(batch)
                # accumulate losses async
                eval_loss.append(p_eval_step(state, batch))

            # get the mean of the loss
            eval_loss = jnp.stack(eval_loss)
            eval_loss = jnp.mean(eval_loss)
            eval_metrics = {"loss": eval_loss}

            # log metrics
            metrics_logger.log(eval_metrics, prefix="eval")

            # Print metrics and update progress bar
            desc = f"Epoch... ({epoch + 1}/{num_epochs} | Eval Loss: {eval_metrics['loss']})"
            epochs.write(desc)
            epochs.desc = desc

            return eval_metrics

    def run_save_model(state, eval_metrics=None):
        if jax.process_index() == 0:

            output_dir = training_args.output_dir
            use_bucket = output_dir.startswith("gs://")
            if use_bucket:
                bucket_path = Path(output_dir[5:]) / wandb.run.id / f"step_{state.step}"
                bucket, dir_path = str(bucket_path).split("/", 1)
                tmp_dir = tempfile.TemporaryDirectory()
                output_dir = tmp_dir.name

            # save model
            params = jax.device_get(state.params)
            model.save_pretrained(
                output_dir,
                params=params,
            )

            # save tokenizer
            tokenizer.save_pretrained(output_dir)

            # copy to bucket
            if use_bucket:
                client = storage.Client()
                bucket = client.bucket(bucket)
                for filename in Path(output_dir).glob("*"):
                    blob_name = str(Path(dir_path) / "model" / filename.name)
                    blob = bucket.blob(blob_name)
                    blob.upload_from_filename(str(filename))
                tmp_dir.cleanup()

            # save state
            opt_state = jax.device_get(state.opt_state)
            if use_bucket:
                blob_name = str(Path(dir_path) / "state" / "opt_state.msgpack")
                blob = bucket.blob(blob_name)
                blob.upload_from_file(io.BytesIO(to_bytes(opt_state)))
            else:
                with (Path(output_dir) / "opt_state.msgpack").open("wb") as f:
                    f.write(to_bytes(opt_state))

            # save to W&B
            if training_args.log_model:
                # save some space
                c = wandb.wandb_sdk.wandb_artifacts.get_artifacts_cache()
                c.cleanup(wandb.util.from_human_size("20GB"))

                metadata = {
                    k: jax.device_get(getattr(state, k)).item()
                    for k in ["step", "epoch", "train_time", "train_samples"]
                }
                metadata["num_params"] = num_params
                if eval_metrics is not None:
                    metadata["eval"] = eval_metrics

                # create model artifact
                if use_bucket:
                    metadata["bucket_path"] = f"gs://{bucket_path}/model"
                artifact = wandb.Artifact(
                    name=f"model-{wandb.run.id}",
                    type="DalleBart_model",
                    metadata=metadata,
                )
                if use_bucket:
                    artifact.add_reference(metadata["bucket_path"])
                else:
                    for filename in [
                        "config.json",
                        "flax_model.msgpack",
                        "merges.txt",
                        "special_tokens_map.json",
                        "tokenizer.json",
                        "tokenizer_config.json",
                        "vocab.json",
                    ]:
                        artifact.add_file(
                            f"{Path(training_args.output_dir) / filename}"
                        )
                wandb.run.log_artifact(artifact)

                # create state artifact
                if use_bucket:
                    metadata["bucket_path"] = f"gs://{bucket_path}/state"
                artifact_state = wandb.Artifact(
                    name=f"state-{wandb.run.id}",
                    type="DalleBart_state",
                    metadata=metadata,
                )
                if use_bucket:
                    artifact_state.add_reference(metadata["bucket_path"])
                else:
                    artifact_state.add_file(
                        f"{Path(training_args.output_dir) / 'opt_state.msgpack'}"
                    )
                wandb.run.log_artifact(artifact_state)

    with maps.mesh(mesh.devices, mesh.axis_names):
        for epoch in epochs:
            state.replace(epoch=epoch)
            # ======================== Training ================================
            metrics_logger.update_state_metrics(state)
            metrics_logger.log({})

            # Generate an epoch by shuffling sampling indices from the train dataset
            train_loader = dataset.dataloader(
                "train",
                batch_size_per_node,
                epoch,
            )
            # train
            for batch in tqdm(
                train_loader,
                desc="Training...",
                position=1,
                leave=False,
                total=steps_per_epoch,
            ):
                # calculate delta time (we have a lag of one step but it's ok)
                new_time = time.perf_counter()
                delta_time = new_time - last_time
                last_time = new_time

                # reshape data into (gradient_accumulation_steps, dp_devices, batch_per_dp, ...)
                batch = jax.tree_map(
                    lambda x: x.reshape(
                        (
                            training_args.gradient_accumulation_steps,
                            batch_size_per_node_per_grad_step,
                        )
                        + x.shape[1:]
                    ),
                    batch,
                )
                # freeze batch to pass safely to jax transforms
                batch = freeze(batch)

                # train step
                state, train_metrics = p_train_step(state, batch, delta_time)
                step += 1

                if step % training_args.logging_steps == 0 and jax.process_index() == 0:
                    metrics_logger.update_state_metrics(state)
                    metrics_logger.log(train_metrics, prefix="train")

                eval_metrics = None
                if step % training_args.eval_steps == 0:
                    eval_metrics = run_evaluation()

                if step % training_args.save_steps == 0:
                    run_save_model(state, eval_metrics)

            # log final train metrics
            if train_metrics is not None:
                metrics_logger.update_state_metrics(state)
                metrics_logger.log(train_metrics, prefix="train")

                epochs.write(
                    f"Epoch... ({epoch + 1}/{num_epochs} | Loss: {train_metrics['loss']}, Learning Rate: {train_metrics['learning_rate']})"
                )

            # Final evaluation
            eval_metrics = run_evaluation()

            # save checkpoint after each epoch
            run_save_model(state, eval_metrics)


if __name__ == "__main__":
    main()