File size: 9,083 Bytes
803ccbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7b619a
803ccbf
 
 
b7b619a
803ccbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7b619a
803ccbf
 
 
 
 
 
 
 
 
b7b619a
803ccbf
 
b7b619a
803ccbf
 
b7b619a
803ccbf
 
 
b7b619a
803ccbf
 
b7b619a
 
 
 
803ccbf
 
b7b619a
803ccbf
b7b619a
803ccbf
 
 
 
 
 
b7b619a
 
 
 
 
 
 
 
 
 
 
 
 
803ccbf
 
 
 
 
b7b619a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
803ccbf
b7b619a
803ccbf
 
 
b7b619a
803ccbf
 
 
b7b619a
803ccbf
 
 
 
 
 
 
 
b7b619a
803ccbf
 
 
 
 
 
 
b7b619a
803ccbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7b619a
803ccbf
 
 
 
 
b7b619a
803ccbf
 
 
 
 
 
 
 
 
 
 
 
b7b619a
803ccbf
 
 
 
 
b7b619a
803ccbf
 
 
 
 
 
b7b619a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
# coding=utf-8
# Copyright 2022 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""JAX Ops for symmetric matrices used by the Shampoo optimizer."""

import functools
from typing import Any, List, Sequence, Union

import jax
import jax.numpy as jnp
import numpy as np
from flax import struct
from jax import lax


@struct.dataclass
class SlicedSymmetricMatrix:
    """A symmetric matrix represented by lower-triangular block row slices.

    For example, the symmetric matrix M = [[a, b^T], [b, c]] would be represented
    by the block rows a and [b, c].

    The matrix may be batched, in which case each entry of block_rows may have
    dimension greater than 2. The last two dimensions represent the rows and cols.
    """

    block_rows: List[jnp.ndarray]


def product_with_transpose(
    mat1,
    mat2,
    axes,
    precision=lax.Precision.DEFAULT,
):
    """Returns mat1 * mat2^T for two matrices (possibly batched).

    The rows and columns are the last two dimensions for each matrix.

    Args:
      mat1: First matrix.
      mat2: Second matrix.
      axes: The axes over which to apply the product.
      precision: JAX precision to use for the multiplication.
    """
    return jnp.tensordot(a=mat1, b=mat2, axes=axes, precision=precision)


@functools.partial(jax.jit, static_argnames=("block_size", "axes", "precision"))
def sliced_transposed_product(
    mat,
    block_size,
    axes=(-1,),
    precision=lax.Precision.DEFAULT,
):
    """Returns the blocked slices representing a symmetric contraction.

    Specifically, the output is a contraction of the input mat with itself, in the
    specified axes.

    Args:
      mat: The matrix for which we will compute a contraction with itself.
      block_size: The size of row blocks to compute.
      axes: Axes to use for the contraction.
      precision: The precision to use in each computation.

    Raises:
      ValueError: Raised when the specified block size does not evenly divide
        the number of rows of the input mat.
    """
    rank = len(mat.shape)

    def _make_axis_positive(ax):
        assert -rank <= ax < rank
        return ax + rank if ax < 0 else ax

    positive_axes = [_make_axis_positive(ax) for ax in axes]
    assert len(positive_axes) == len(axes)
    remaining_axes = set(range(rank)) - set(positive_axes)
    assert len(remaining_axes) == 1
    remaining_ax = remaining_axes.pop()

    num_rows = mat.shape[remaining_ax]
    if num_rows % block_size != 0:
        raise ValueError(
            "The row dimension must be divisible by block_size. "
            f"Instead got row dimension={num_rows} and block_size={block_size}."
        )

    block_rows = []
    for i in range(num_rows // block_size):
        start_indices = [0] * rank
        start_indices[remaining_ax] = i * block_size

        slice_sizes = list(mat.shape)
        slice_sizes[remaining_ax] = block_size

        slice_sizes_full = list(mat.shape)
        slice_sizes_full[remaining_ax] = (i + 1) * block_size

        block_rows.append(
            product_with_transpose(
                lax.dynamic_slice(
                    mat, start_indices=start_indices, slice_sizes=slice_sizes
                ),
                lax.dynamic_slice(
                    mat, start_indices=[0] * rank, slice_sizes=slice_sizes_full
                ),
                axes=(axes, axes),
                precision=precision,
            )
        )

    return SlicedSymmetricMatrix(block_rows=block_rows)


@functools.partial(jax.jit, static_argnames=("block_size", "axes", "precision"))
def sliced_transposed_product_concat(
    mat,
    block_size,
    axes=(-1,),
    precision=lax.Precision.DEFAULT,
):
    """Returns the concatenated slices representing mat*mat^T.

    Args:
      mat: The matrix for which we will compute mat*mat^T. It does not need to be
        square, and may be batched.
      block_size: The size of row blocks to compute.
      axes: Axes to use for the contraction.
      precision: The precision to use in each computation.

    Raises:
      ValueError: Raised when the specified block size does not evenly divide
        the number of rows of the input mat.
    """
    sliced_symmetric_matrix = sliced_transposed_product(
        mat=mat, block_size=block_size, axes=axes, precision=precision
    )
    return jnp.concatenate(sliced_symmetric_matrix.block_rows, axis=-1)


@jax.jit
def materialize_matrix(symmetric_matrix):
    """Returns a materialized symmetric matrix.

    Args:
      symmetric_matrix: the matrix represented by lower-triangular block slices.
    """
    block_rows = symmetric_matrix.block_rows
    block_size = block_rows[0].shape[-2]
    num_blocks = len(block_rows)

    # Slice the lower-triangular and diagonal blocks into blocks.
    blocks = [
        [
            block_row[Ellipsis, i * block_size : (i + 1) * block_size]
            for i in range(k + 1)
        ]
        for k, block_row in enumerate(block_rows)
    ]

    # Generate the (off-diagonal) upper-triangular blocks.
    off_diags = [[] for _ in range(num_blocks - 1)]
    for k, block_row in enumerate(block_rows[1:]):
        for i in range(k + 1):
            off_diags[i].append(
                jnp.swapaxes(
                    a=block_row[Ellipsis, i * block_size : (i + 1) * block_size],
                    axis1=-1,
                    axis2=-2,
                )
            )

    return jnp.block(
        [row + row_t for row, row_t in zip(blocks[:-1], off_diags)] + [blocks[-1]]
    )


@functools.partial(jax.jit, static_argnames=("num_blocks"))
def materialize_matrix_from_concat(
    block_rows_concat,
    num_blocks,
):
    """Returns a materialized symmetric matrix from concatenated slices.

    Args:
      block_rows_concat: The matrix represented as the concatenated
        lower-triangular blocks.
      num_blocks: The number of block-rows used to represent the symmetric matrix.
    """
    block_size = block_rows_concat.shape[-2]

    block_rows = [
        block_rows_concat[
            Ellipsis,
            (k * (k + 1))
            // 2
            * block_size : (((k + 1) * (k + 2)) // 2 + 1)
            * block_size,
        ]
        for k in range(num_blocks)
    ]

    return materialize_matrix(SlicedSymmetricMatrix(block_rows=block_rows))


@functools.partial(jax.jit, static_argnames=("alpha", "beta", "axes"))
def update_sliced_rows(
    symmetric_matrix,
    mat,
    alpha,
    beta,
    axes=(-1,),
):
    """Implements the blocked equivalent of SYRK.

    Specifically, the symmetric matrix (represented using lower-triangular block
    rows) is updated using the sliced product of mat.

    Args:
      symmetric_matrix: The symmetric matrix to update.
      mat: The matrix to use for the update = mat * mat^T. The number of rows
        should match that of symmetric_matrix.
      alpha: The weight for the update.
      beta: The weight for the original symmetric matrix.
      axes: Axes to use for the contraction of the update.

    Returns:
      The updated rows of alpha * mat * mat^T + beta * symmetric_matrix.
    """
    block_size = symmetric_matrix.block_rows[0].shape[-2]
    sym_prod = sliced_transposed_product(mat=mat, block_size=block_size, axes=axes)
    return SlicedSymmetricMatrix(
        block_rows=[
            update * alpha + row * beta
            for update, row in zip(sym_prod.block_rows, symmetric_matrix.block_rows)
        ]
    )


def find_num_blocks(block_rows_concat):
    """Returns the number of (row) blocks representing the concatenated matrix.

    For example, an input with dimensions [256, 2560] represents 10 square blocks,
    which matches 4 lower-triangular block rows (1+2+3+4). So this function will
    return 4.

    Use ordinary numpy functions here so that the returned value is static.

    Args:
      block_rows_concat: The concatenated block array.

    Raises:
      ValueError: When the dimensions of the matrix do not correspond to a lower
      triangular block representation.
    """
    # Compute the number of square blocks used to represent the matrix.
    total_blocks = block_rows_concat.shape[-1] / block_rows_concat.shape[-2]
    # Determine the number of block rows by inverting y = x*(x+1)/2.
    num_blocks = np.round((np.sqrt(8 * total_blocks + 1) - 1) / 2).astype(np.int32)
    if num_blocks * (num_blocks + 1) / 2 != total_blocks:
        raise ValueError(
            "Could not determine an appropriate number of blocks for "
            "the concatenated matrix."
        )
    else:
        return num_blocks