Spaces:
Running
Running
File size: 33,326 Bytes
6197b2f 972bc8d 6197b2f 972bc8d 6197b2f 5f954fc 6197b2f 5f954fc 6197b2f 5f954fc 972bc8d 5f954fc 6197b2f 5f954fc 6197b2f 972bc8d a6252c9 972bc8d a6252c9 972bc8d a6252c9 972bc8d a6252c9 64d99b2 eb24dbc a5ed112 eb24dbc 6197b2f 972bc8d 6197b2f 972bc8d 1bb3269 6197b2f 972bc8d 6197b2f 972bc8d 6197b2f 8654dc9 6197b2f 1bb3269 6197b2f 972bc8d 6197b2f 972bc8d 6197b2f 972bc8d 6197b2f 180ed1e 6197b2f 180ed1e 6197b2f 972bc8d 6197b2f 972bc8d 6197b2f 6f1f2d9 6197b2f 6f1f2d9 6197b2f 972bc8d 6197b2f 972bc8d 6197b2f 972bc8d 6197b2f 972bc8d 6197b2f 972bc8d 6197b2f 972bc8d 6197b2f 180ed1e 6197b2f 180ed1e 6197b2f 972bc8d 6197b2f 972bc8d 6197b2f 6f1f2d9 6197b2f 6f1f2d9 6197b2f 972bc8d 6197b2f 972bc8d 6197b2f 180ed1e 6197b2f a11892f 6197b2f 972bc8d 6197b2f 972bc8d 1bb3269 972bc8d 6197b2f 6f1f2d9 6197b2f 180ed1e 6197b2f 1bb3269 6197b2f 972bc8d 6197b2f 972bc8d 6197b2f 972bc8d 6197b2f 972bc8d 6197b2f 972bc8d 6197b2f 972bc8d eb24dbc 772415c 5f954fc 972bc8d 6197b2f eb24dbc 772415c cc34d07 772415c 12f323d 44b7c3e 12f323d 68cc185 12f323d 772415c 44b7c3e 772415c 44b7c3e 772415c 44b7c3e 772415c e5a52b9 6f1f2d9 e5a52b9 5f954fc 6197b2f 972bc8d 6197b2f 972bc8d 6197b2f ebac379 6197b2f 972bc8d 6197b2f 972bc8d 6197b2f 6f1f2d9 6197b2f 972bc8d 6197b2f 7e48337 972bc8d ebac379 972bc8d 6197b2f 972bc8d 6197b2f 972bc8d 6197b2f 6f1f2d9 6197b2f 6f1f2d9 6197b2f 6f1f2d9 6197b2f 972bc8d 6197b2f 972bc8d 6197b2f 972bc8d 6197b2f 972bc8d 6197b2f ebac379 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 |
# coding=utf-8
# Copyright 2021 The Fairseq Authors and The Google Flax Team Authors And The HuggingFace Inc. team and the DalleBart team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" DalleBart model. """
import math
import os
from functools import partial
from pickle import UnpicklingError
from typing import Optional, Tuple, Union
import flax.linen as nn
import jax
import jax.numpy as jnp
import msgpack.exceptions
from flax.core.frozen_dict import unfreeze
from flax.linen import make_causal_mask
from flax.serialization import from_bytes
from flax.traverse_util import flatten_dict, unflatten_dict
from jax import lax
from jax.random import PRNGKey
from transformers.configuration_utils import PretrainedConfig
from transformers.file_utils import (
FLAX_WEIGHTS_NAME,
WEIGHTS_NAME,
cached_path,
hf_bucket_url,
is_offline_mode,
is_remote_url,
)
from transformers.modeling_flax_outputs import (
FlaxCausalLMOutputWithCrossAttentions,
FlaxSeq2SeqLMOutput,
)
from transformers.modeling_flax_utils import ACT2FN
from transformers.models.bart.modeling_flax_bart import (
FlaxBartAttention,
FlaxBartDecoder,
FlaxBartDecoderLayer,
FlaxBartDecoderLayerCollection,
FlaxBartEncoder,
FlaxBartEncoderLayer,
FlaxBartEncoderLayerCollection,
FlaxBartForConditionalGeneration,
FlaxBartForConditionalGenerationModule,
FlaxBartModule,
FlaxBartPreTrainedModel,
)
from transformers.utils import logging
from .configuration import DalleBartConfig
from .utils import PretrainedFromWandbMixin
logger = logging.get_logger(__name__)
class FlaxBartAttention(FlaxBartAttention):
"""
Edits:
- causal mask is used only in decoder and considers image_length
"""
def setup(self) -> None:
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {self.num_heads})."
)
dense = partial(
nn.Dense,
self.embed_dim,
use_bias=self.bias,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense()
self.out_proj = dense()
self.dropout_layer = nn.Dropout(rate=self.dropout)
if self.causal:
# used only in decoder
self.causal_mask = make_causal_mask(
jnp.ones((1, self.config.image_length), dtype="bool"), dtype="bool"
)
class FlaxBartEncoderLayer(FlaxBartEncoderLayer):
"""
Edits:
- no bias
- use custom FlaxBartAttention
"""
def setup(self) -> None:
self.embed_dim = self.config.d_model
self.self_attn = FlaxBartAttention(
config=self.config,
embed_dim=self.embed_dim,
num_heads=self.config.encoder_attention_heads,
dropout=self.config.attention_dropout,
bias=False,
dtype=self.dtype,
)
self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
self.activation_fn = ACT2FN[self.config.activation_function]
self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout)
self.fc1 = nn.Dense(
self.config.encoder_ffn_dim,
dtype=self.dtype,
use_bias=False,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
self.fc2 = nn.Dense(
self.embed_dim,
dtype=self.dtype,
use_bias=False,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
class FlaxBartEncoderLayerCollection(FlaxBartEncoderLayerCollection):
"""
Edits:
- use custom FlaxBartEncoderLayer
- allow Gradient Checkpointing (nn.remat)
"""
def setup(self):
layer_module = (
nn.remat(FlaxBartEncoderLayer)
if self.config.gradient_checkpointing
else FlaxBartEncoderLayer
)
self.layers = [
layer_module(self.config, name=str(i), dtype=self.dtype)
for i in range(self.config.encoder_layers)
]
self.layerdrop = self.config.encoder_layerdrop
class FlaxBartDecoderLayer(FlaxBartDecoderLayer):
"""
Edits:
- no bias
- uses custom FlaxBartAttention
"""
def setup(self) -> None:
self.embed_dim = self.config.d_model
self.self_attn = FlaxBartAttention(
config=self.config,
embed_dim=self.embed_dim,
num_heads=self.config.decoder_attention_heads,
dropout=self.config.attention_dropout,
causal=True,
bias=False,
dtype=self.dtype,
)
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
self.activation_fn = ACT2FN[self.config.activation_function]
self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout)
self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
self.encoder_attn = FlaxBartAttention(
config=self.config,
embed_dim=self.embed_dim,
num_heads=self.config.decoder_attention_heads,
dropout=self.config.attention_dropout,
bias=False,
dtype=self.dtype,
)
self.encoder_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
self.fc1 = nn.Dense(
self.config.encoder_ffn_dim,
dtype=self.dtype,
use_bias=False,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
self.fc2 = nn.Dense(
self.embed_dim,
dtype=self.dtype,
use_bias=False,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
class FlaxBartDecoderLayerCollection(FlaxBartDecoderLayerCollection):
"""
Edits:
- use custom FlaxBartDecoderLayer
- allow Gradient Checkpointing (nn.remat)
"""
def setup(self):
layer_module = (
nn.remat(FlaxBartDecoderLayer)
if self.config.gradient_checkpointing
else FlaxBartDecoderLayer
)
self.layers = [
layer_module(self.config, name=str(i), dtype=self.dtype)
for i in range(self.config.decoder_layers)
]
self.layerdrop = self.config.decoder_layerdrop
class FlaxBartEncoder(FlaxBartEncoder):
"""
Edits:
- offset set to 0 (no padding token)
- use max_text_length instead of max_position_embeddings
- use custom FlaxBartEncoderLayerCollection
- embed_tokens cannot be None (issue at compile time)
"""
def setup(self):
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
embed_dim = self.config.d_model
self.padding_idx = self.config.pad_token_id
self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0
# Bart is set up so that if padding_idx is specified then offset the embedding ids by 2
# and adjust num_embeddings appropriately. Other models don't have this hack
self.offset = 0
self.embed_positions = nn.Embed(
self.config.max_text_length + self.offset,
embed_dim,
embedding_init=jax.nn.initializers.normal(self.config.init_std),
)
self.layers = FlaxBartEncoderLayerCollection(self.config, self.dtype)
self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
class FlaxBartDecoder(FlaxBartDecoder):
"""
Edits:
- offset set to 0 (no padding token)
- use image_length instead of max_position_embeddings
- use custom FlaxBartDecoderLayerCollection
- embed_tokens cannot be None (issue at compile time)
"""
def setup(self):
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
embed_dim = self.config.d_model
self.padding_idx = self.config.pad_token_id
self.embed_scale = (
math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0
)
# Bart is set up so that if padding_idx is specified then offset the embedding ids by 2
# and adjust num_embeddings appropriately. Other models don't have this hack
self.offset = 0
self.embed_positions = nn.Embed(
self.config.image_length + self.offset, # image length for BOS
embed_dim,
embedding_init=jax.nn.initializers.normal(self.config.init_std),
)
self.layers = FlaxBartDecoderLayerCollection(self.config, self.dtype)
self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
class FlaxBartModule(FlaxBartModule):
"""
Edits
- use custom FlaxBartEncoder & FlaxBartDecoder
- use separate embeddings for Encoder & Decoder
"""
def setup(self):
encoder_embed_tokens = nn.Embed(
self.config.encoder_vocab_size,
self.config.d_model,
embedding_init=jax.nn.initializers.normal(self.config.init_std),
)
decoder_embed_tokens = nn.Embed(
self.config.image_vocab_size + 1, # image vocab size + 1 for BOS
self.config.d_model,
embedding_init=jax.nn.initializers.normal(self.config.init_std),
)
self.encoder = FlaxBartEncoder(
self.config, dtype=self.dtype, embed_tokens=encoder_embed_tokens
)
self.decoder = FlaxBartDecoder(
self.config, dtype=self.dtype, embed_tokens=decoder_embed_tokens
)
class FlaxBartPreTrainedModel(FlaxBartPreTrainedModel):
"""
Edits:
- added num_params property
- config_class replaced to DalleBartConfig
- __init__ accepts abstract_init which does uses parameter shape to initialize the model
- init weights on CPU with `load_on_cpu`
- restore weights on CPU with custom `from_pretrained`
"""
config_class = DalleBartConfig
def __init__(
self,
config: DalleBartConfig,
input_shape: Tuple[int] = (1, 1),
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
abstract_init: bool = False,
load_on_cpu: bool = False,
**kwargs,
):
module = self.module_class(config=config, dtype=dtype, **kwargs)
# adapted from HuggingFace FlaxPreTrainedModel
if config is None:
raise ValueError("config cannot be None")
if module is None:
raise ValueError("module cannot be None")
# Those are private to be exposed as typed property on derived classes.
self._config = config
self._module = module
# Those are public as their type is generic to every derived classes.
self.key = PRNGKey(seed)
self.dtype = dtype
# init weights on CPU
if load_on_cpu:
# init weights on CPU
init_fn = jax.jit(self.init_weights, static_argnums=(1,), backend="cpu")
else:
init_fn = self.init_weights
# randomly initialized parameters
random_params = self.init_weights(self.key, input_shape)
if abstract_init:
# only set shape and dtype, load parameters separately
init_fn = partial(init_fn, input_shape=input_shape)
random_params = jax.eval_shape(init_fn, self.key)
else:
random_params = init_fn(self.key, input_shape)
# save required_params as set
self._required_params = set(flatten_dict(unfreeze(random_params)).keys())
self.params = random_params
@property
def num_params(self):
num_params = jax.tree_map(
lambda param: param.size, flatten_dict(unfreeze(self.params))
).values()
return sum(list(num_params))
@classmethod
def from_pretrained(
cls,
pretrained_model_name_or_path: Union[str, os.PathLike],
dtype: jnp.dtype = jnp.float32,
*model_args,
**kwargs,
):
config = kwargs.pop("config", None)
cache_dir = kwargs.pop("cache_dir", None)
from_pt = kwargs.pop("from_pt", False)
ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False)
force_download = kwargs.pop("force_download", False)
resume_download = kwargs.pop("resume_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", False)
use_auth_token = kwargs.pop("use_auth_token", None)
revision = kwargs.pop("revision", None)
from_pipeline = kwargs.pop("_from_pipeline", None)
from_auto_class = kwargs.pop("_from_auto", False)
user_agent = {
"file_type": "model",
"framework": "flax",
"from_auto_class": from_auto_class,
}
if from_pipeline is not None:
user_agent["using_pipeline"] = from_pipeline
if is_offline_mode() and not local_files_only:
logger.info("Offline mode: forcing local_files_only=True")
local_files_only = True
# Load config if we don't provide a configuration
if not isinstance(config, PretrainedConfig):
config_path = (
config if config is not None else pretrained_model_name_or_path
)
config, model_kwargs = cls.config_class.from_pretrained(
config_path,
cache_dir=cache_dir,
return_unused_kwargs=True,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
revision=revision,
_from_auto=from_auto_class,
_from_pipeline=from_pipeline,
**kwargs,
)
else:
model_kwargs = kwargs
# Add the dtype to model_kwargs
model_kwargs["dtype"] = dtype
# Load model
if pretrained_model_name_or_path is not None:
if os.path.isdir(pretrained_model_name_or_path):
if from_pt and os.path.isfile(
os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
):
# Load from a PyTorch checkpoint
archive_file = os.path.join(
pretrained_model_name_or_path, WEIGHTS_NAME
)
elif os.path.isfile(
os.path.join(pretrained_model_name_or_path, FLAX_WEIGHTS_NAME)
):
# Load from a Flax checkpoint
archive_file = os.path.join(
pretrained_model_name_or_path, FLAX_WEIGHTS_NAME
)
else:
raise EnvironmentError(
f"Error no file named {[FLAX_WEIGHTS_NAME, WEIGHTS_NAME]} found in directory "
f"{pretrained_model_name_or_path} or `from_pt` set to False"
)
elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(
pretrained_model_name_or_path
):
archive_file = pretrained_model_name_or_path
else:
archive_file = hf_bucket_url(
pretrained_model_name_or_path,
filename=WEIGHTS_NAME if from_pt else FLAX_WEIGHTS_NAME,
revision=revision,
)
# redirect to the cache, if necessary
try:
resolved_archive_file = cached_path(
archive_file,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
user_agent=user_agent,
)
except EnvironmentError as err:
logger.error(err)
msg = (
f"Can't load weights for '{pretrained_model_name_or_path}'. Make sure that:\n\n"
f"- '{pretrained_model_name_or_path}' is a correct model identifier listed on 'https://huggingface.co/models'\n"
f" (make sure '{pretrained_model_name_or_path}' is not a path to a local directory with something else, in that case)\n\n"
f"- or '{pretrained_model_name_or_path}' is the correct path to a directory containing a file named {WEIGHTS_NAME}.\n\n"
)
raise EnvironmentError(msg)
if resolved_archive_file == archive_file:
logger.info(f"loading weights file {archive_file}")
else:
logger.info(
f"loading weights file {archive_file} from cache at {resolved_archive_file}"
)
else:
resolved_archive_file = None
# init random models
model = cls(config, *model_args, **model_kwargs)
with open(resolved_archive_file, "rb") as state_f:
try:
state = from_bytes(cls, state_f.read())
except (UnpicklingError, msgpack.exceptions.ExtraData) as e:
try:
with open(resolved_archive_file) as f:
if f.read().startswith("version"):
raise OSError(
"You seem to have cloned a repository without having git-lfs installed. Please install "
"git-lfs and run `git lfs install` followed by `git lfs pull` in the folder "
"you cloned."
)
else:
raise ValueError from e
except (UnicodeDecodeError, ValueError):
raise EnvironmentError(
f"Unable to convert {archive_file} to Flax deserializable object. "
)
# if model is base model only use model_prefix key
if (
cls.base_model_prefix not in dict(model.params)
and cls.base_model_prefix in state
):
state = state[cls.base_model_prefix]
# if model is head model and we are loading weights from base model
# we initialize new params dict with base_model_prefix
if (
cls.base_model_prefix in dict(model.params)
and cls.base_model_prefix not in state
):
state = {cls.base_model_prefix: state}
# flatten dicts
state = flatten_dict(state)
random_state = flatten_dict(unfreeze(model.params))
missing_keys = model.required_params - set(state.keys())
unexpected_keys = set(state.keys()) - model.required_params
# Mistmatched keys contains tuples key/shape1/shape2 of weights in the checkpoint that have a shape not
# matching the weights in the model.
mismatched_keys = []
for key in state.keys():
if key in random_state and state[key].shape != random_state[key].shape:
if ignore_mismatched_sizes:
mismatched_keys.append(
(key, state[key].shape, random_state[key].shape)
)
state[key] = random_state[key]
else:
raise ValueError(
f"Trying to load the pretrained weight for {key} failed: checkpoint has shape "
f"{state[key].shape} which is incompatible with the model shape {random_state[key].shape}. "
"Using `ignore_mismatched_sizes=True` if you really want to load this checkpoint inside this "
"model."
)
# add missing keys as random parameters
for missing_key in missing_keys:
state[missing_key] = random_state[missing_key]
# remove unexpected keys to not be saved again
for unexpected_key in unexpected_keys:
del state[unexpected_key]
if len(unexpected_keys) > 0:
logger.warning(
f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when "
f"initializing {model.__class__.__name__}: {unexpected_keys}\n"
f"- This IS expected if you are initializing {model.__class__.__name__} from the checkpoint of a model trained on another task "
f"or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n"
f"- This IS NOT expected if you are initializing {model.__class__.__name__} from the checkpoint of a model that you expect "
f"to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)."
)
else:
logger.info(
f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n"
)
if len(missing_keys) > 0:
logger.warning(
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at {pretrained_model_name_or_path} "
f"and are newly initialized: {missing_keys}\n"
f"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference."
)
elif len(mismatched_keys) == 0:
logger.info(
f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at {pretrained_model_name_or_path}.\n"
f"If your task is similar to the task the model of the checkpoint was trained on, "
f"you can already use {model.__class__.__name__} for predictions without further training."
)
if len(mismatched_keys) > 0:
mismatched_warning = "\n".join(
[
f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated"
for key, shape1, shape2 in mismatched_keys
]
)
logger.warning(
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at {pretrained_model_name_or_path} "
f"and are newly initialized because the shapes did not match:\n{mismatched_warning}\n"
f"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference."
)
# set correct parameters
model.params = unflatten_dict(state)
return model
class FlaxBartForConditionalGenerationModule(FlaxBartForConditionalGenerationModule):
"""
Edits:
- no bias
- lm_head set to image_vocab_size + 1 (for BOS)
- uses custom FlaxBartModule
"""
def setup(self):
self.model = FlaxBartModule(config=self.config, dtype=self.dtype)
self.lm_head = nn.Dense(
self.config.image_vocab_size
+ 1, # image vocab size + 1 for BOS to have same size as decoder inputs (for sharding)
use_bias=False,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
def __call__(
self,
input_ids,
attention_mask,
decoder_input_ids,
decoder_attention_mask,
position_ids,
decoder_position_ids,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
):
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
position_ids=position_ids,
decoder_position_ids=decoder_position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
)
hidden_states = outputs[0]
if self.config.tie_word_embeddings:
shared_embedding = self.model.variables["params"]["shared"]["embedding"]
lm_logits = self.lm_head.apply(
{"params": {"kernel": shared_embedding.T}}, hidden_states
)
else:
lm_logits = self.lm_head(hidden_states)
if not return_dict:
output = (lm_logits,) + outputs[1:]
return output
return FlaxSeq2SeqLMOutput(
logits=lm_logits,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
class DalleBart(
PretrainedFromWandbMixin, FlaxBartPreTrainedModel, FlaxBartForConditionalGeneration
):
"""
Edits:
- renamed from FlaxBartForConditionalGeneration
- uses custom FlaxBartPreTrainedModel
- uses custom FlaxBartForConditionalGenerationModule
- no bias in decode method
- custom prepare_inputs_for_generation using "max_length - 1" to avoid issues
related to position embedding during model.generate()
"""
module_class = FlaxBartForConditionalGenerationModule
def decode(
self,
decoder_input_ids,
encoder_outputs,
encoder_attention_mask: Optional[jnp.ndarray] = None,
decoder_attention_mask: Optional[jnp.ndarray] = None,
decoder_position_ids: Optional[jnp.ndarray] = None,
past_key_values: dict = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
train: bool = False,
params: dict = None,
dropout_rng: PRNGKey = None,
):
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = (
return_dict if return_dict is not None else self.config.return_dict
)
encoder_hidden_states = encoder_outputs[0]
if encoder_attention_mask is None:
batch_size, sequence_length = encoder_hidden_states.shape[:2]
encoder_attention_mask = jnp.ones((batch_size, sequence_length))
batch_size, sequence_length = decoder_input_ids.shape
if decoder_attention_mask is None:
decoder_attention_mask = jnp.ones((batch_size, sequence_length))
if decoder_position_ids is None:
if past_key_values is not None:
raise ValueError(
"Make sure to provide `decoder_position_ids` when passing `past_key_values`."
)
decoder_position_ids = jnp.broadcast_to(
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
)
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
inputs = {"params": params or self.params}
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be
# passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
# it can be changed by FlaxBartAttention module
if past_key_values:
inputs["cache"] = past_key_values
mutable = ["cache"]
else:
mutable = False
def _decoder_forward(
module,
decoder_input_ids,
decoder_attention_mask,
decoder_position_ids,
**kwargs,
):
decoder_module = module._get_decoder_module()
outputs = decoder_module(
decoder_input_ids,
decoder_attention_mask,
decoder_position_ids,
**kwargs,
)
hidden_states = outputs[0]
if self.config.tie_word_embeddings:
shared_embedding = module.model.variables["params"]["shared"][
"embedding"
]
lm_logits = module.lm_head.apply(
{"params": {"kernel": shared_embedding.T}}, hidden_states
)
else:
lm_logits = module.lm_head(hidden_states)
return lm_logits, outputs
outputs = self.module.apply(
inputs,
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=not train,
rngs=rngs,
mutable=mutable,
method=_decoder_forward,
)
if past_key_values is None:
lm_logits, decoder_outputs = outputs
else:
(lm_logits, decoder_outputs), past = outputs
if return_dict:
outputs = FlaxCausalLMOutputWithCrossAttentions(
logits=lm_logits,
hidden_states=decoder_outputs.hidden_states,
attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
)
else:
outputs = (lm_logits,) + decoder_outputs[1:]
# add updated cache to model output
if past_key_values is not None and return_dict:
outputs["past_key_values"] = unfreeze(past["cache"])
return outputs
elif past_key_values is not None and not return_dict:
outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
return outputs
def prepare_inputs_for_generation(
self,
decoder_input_ids,
max_length,
attention_mask: Optional[jnp.DeviceArray] = None,
decoder_attention_mask: Optional[jnp.DeviceArray] = None,
encoder_outputs=None,
**kwargs,
):
# initializing the cache
batch_size, seq_length = decoder_input_ids.shape
past_key_values = self.init_cache(batch_size, max_length - 1, encoder_outputs)
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
# But since the decoder uses a causal mask, those positions are masked anyways.
# Thus we can create a single static attention_mask here, which is more efficient for compilation
extended_attention_mask = jnp.ones((batch_size, max_length - 1), dtype="i4")
if decoder_attention_mask is not None:
position_ids = decoder_attention_mask.cumsum(axis=-1) - 1
extended_attention_mask = lax.dynamic_update_slice(
extended_attention_mask, decoder_attention_mask, (0, 0)
)
else:
position_ids = jnp.broadcast_to(
jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)
)
return {
"past_key_values": past_key_values,
"encoder_outputs": encoder_outputs,
"encoder_attention_mask": attention_mask,
"decoder_attention_mask": extended_attention_mask,
"decoder_position_ids": position_ids,
}
|