Spaces:
Running
Running
File size: 40,026 Bytes
46cb01f d209547 803c7df d209547 46cb01f 6523a6d d209547 46cb01f 032f623 46cb01f 0081723 46cb01f f044cb8 d209547 49597a2 14abe8c d209547 46cb01f 14abe8c 0081723 f254058 d209547 1bfc1b5 46cb01f 85c1b8e 0081723 46cb01f 803c7df 3f0364c 46cb01f 803c7df 46cb01f 290e443 46cb01f 0a77f72 adbdff9 0a77f72 803c7df a96f44d 803c7df a96f44d 46cb01f adbdff9 46cb01f fa5b058 46cb01f a96f44d 46cb01f 3f0364c a96f44d 85c1b8e a96f44d 85c1b8e adbdff9 46cb01f adbdff9 85c1b8e 0a77f72 901ff72 0a77f72 a96f44d 46cb01f 901ff72 eac6890 901ff72 46cb01f adbdff9 46cb01f adbdff9 46cb01f 87fac28 46cb01f a96f44d 87fac28 46cb01f 85c1b8e 85748ef adbdff9 85748ef adbdff9 85748ef a2bf605 85748ef adbdff9 85748ef adbdff9 0b87452 adbdff9 89cf9ea 85748ef adbdff9 89cf9ea 85748ef 89cf9ea 25862e8 89cf9ea 8149924 adbdff9 89cf9ea 25862e8 89cf9ea adbdff9 8b72ed8 89cf9ea adbdff9 a2bf605 e2781bc 85748ef e2781bc 85748ef 498559f 1c44a7d a96f44d 85748ef 1c44a7d 46cb01f eac6890 85748ef eac6890 85748ef 274ba73 0081723 fa5b058 adbdff9 a2bf605 274ba73 4c87adf 274ba73 0081723 adbdff9 46cb01f 69cf636 6523a6d 46cb01f 1b757dc 5f28cd2 1b757dc 5f28cd2 1b757dc 5f28cd2 a96f44d 1b757dc 49597a2 1b757dc 7143593 5f28cd2 1b757dc 5f28cd2 1b757dc 5f28cd2 19070ab 46cb01f 85748ef a96f44d 46cb01f a96f44d 46cb01f 803c7df 46cb01f 803c7df 46cb01f 803c7df 46cb01f 9bf9397 85c1b8e 0fe3e72 a96f44d 46cb01f fdf7698 274ba73 fdf7698 074c5e1 5b533b5 274ba73 5b533b5 074c5e1 fa5b058 803c7df fa5b058 772415c fa5b058 9f522b8 cc34d07 772415c fa5b058 46cb01f fa5b058 ae983d7 fa5b058 3cd6d41 3d61350 fa5b058 4aced93 032f623 46cb01f 85c1b8e 46cb01f 0fe3e72 85c1b8e a96f4dc 85c1b8e 46cb01f eac6890 49597a2 46cb01f 2d07559 b7c7458 f254058 5b533b5 b7c7458 274ba73 5b533b5 f254058 a96f44d 85c1b8e 6523a6d 274ba73 5b533b5 6523a6d 0df810d 53dade7 46cb01f e2781bc 46cb01f adbdff9 0b87452 89cf9ea adbdff9 0b87452 8149924 adbdff9 0b87452 cc34d07 0b87452 89cf9ea 0b87452 adbdff9 0b87452 032f623 0b87452 adbdff9 600ad79 69cf636 adbdff9 600ad79 adbdff9 46cb01f cc34d07 225b6ff cc34d07 225b6ff cc34d07 032f623 cc34d07 032f623 cc34d07 0081723 cc34d07 0081723 cc34d07 0081723 fa5b058 3d43591 49597a2 3d43591 49597a2 3d43591 cc34d07 fa5b058 3d43591 cc34d07 032f623 cc34d07 fa5b058 cc34d07 032f623 cc34d07 225b6ff 46cb01f f254058 7b5868f f254058 46cb01f 9db361a d61405b 46cb01f 6523a6d 7b5868f b7c7458 2b7f5f1 b7c7458 2b7f5f1 f254058 46cb01f 7b5868f 14abe8c a96f44d 2d07559 a96f44d 2d07559 46cb01f 2d07559 7b5868f 2b7f5f1 7b5868f 2b7f5f1 7b5868f 2b7f5f1 2d07559 7b5868f 2d07559 7b5868f f254058 7b5868f 2d07559 7b5868f 6523a6d 7b5868f 6523a6d 274ba73 6523a6d 46cb01f a96f44d 274ba73 a96f44d 6523a6d 46cb01f 5f28cd2 14abe8c 5f28cd2 9db361a 14abe8c 46cb01f 0081723 7b5868f 0081723 5f28cd2 0081723 46cb01f a96f44d 46cb01f a96f44d 274ba73 a96f44d 5b533b5 c9e9575 274ba73 c9e9575 274ba73 53dade7 6523a6d 4a4820f 5f28cd2 5b533b5 274ba73 5b533b5 274ba73 5b533b5 46cb01f 566d5f2 46cb01f 32dc2d8 f254058 0df810d 14abe8c a96f44d 14abe8c 5f28cd2 32dc2d8 14abe8c 32dc2d8 19070ab 5f28cd2 566d5f2 32dc2d8 0d94b71 32dc2d8 19070ab 566d5f2 6523a6d d449092 0081723 6e89e9e aecf3a7 a30dbd3 0081723 a96f44d 6523a6d 0df810d 0081723 0df810d a96f44d 6523a6d 0df810d 6523a6d aecf3a7 fa5b058 5b533b5 fa5b058 5b533b5 0081723 5f28cd2 0081723 f254058 0081723 6523a6d 2b7f5f1 f254058 2b7f5f1 f254058 14abe8c f254058 0081723 14abe8c 566d5f2 0081723 5f28cd2 566d5f2 0081723 14abe8c 0081723 a96f44d 0081723 a96f44d 0081723 5f28cd2 566d5f2 0081723 566d5f2 0081723 46cb01f 0081723 754f876 1c44a7d 46cb01f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for seq2seq, text to image.
Script adapted from run_summarization_flax.py
"""
import json
import logging
import os
import sys
import time
from dataclasses import asdict, dataclass, field
from pathlib import Path
from typing import Any, Callable, NamedTuple, Optional
import datasets
import jax
import jax.numpy as jnp
import numpy as np
import optax
import transformers
import wandb
from datasets import Dataset
from distributed_shampoo import GraftingType, distributed_shampoo
from flax.core.frozen_dict import FrozenDict, freeze
from flax.serialization import from_bytes, to_bytes
from flax.training import train_state
from flax.training.common_utils import onehot
from jax.experimental import PartitionSpec, maps
from jax.experimental.pjit import pjit, with_sharding_constraint
from tqdm import tqdm
from transformers import HfArgumentParser
from dalle_mini.data import Dataset
from dalle_mini.model import (
DalleBart,
DalleBartConfig,
DalleBartTokenizer,
set_partitions,
)
logger = logging.getLogger(__name__)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
"""
model_name_or_path: Optional[str] = field(
default=None,
metadata={
"help": "The model checkpoint for weights initialization. "
"Don't set if you want to train a model from scratch. "
"W&B artifact references are supported in addition to the sources supported by `PreTrainedModel`."
},
)
config_name: Optional[str] = field(
default=None,
metadata={
"help": "Pretrained config name or path if not the same as model_name_or_path"
},
)
tokenizer_name: Optional[str] = field(
default=None,
metadata={
"help": "Pretrained tokenizer name or path if not the same as model_name_or_path"
},
)
dtype: Optional[str] = field(
default="float32",
metadata={
"help": "Floating-point format in which the computations will be performed (not the model weights). Choose one of `[float32, float16, bfloat16]`."
},
)
restore_state: Optional[bool] = field(
default=False,
metadata={
"help": "Restore optimizer and training state associated with a wandb checkpoint."
},
)
state_artifact: str = field(init=False)
def __post_init__(self):
if self.restore_state:
assert (
"/model-" in self.model_name_or_path
), "Restoring state only available with W&B artifact reference"
self.state_artifact = self.model_name_or_path.replace(
"/model-", "/state-", 1
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
text_column: Optional[str] = field(
default="caption",
metadata={
"help": "The name of the column in the datasets containing the full texts (for summarization)."
},
)
encoding_column: Optional[str] = field(
default="encoding",
metadata={
"help": "The name of the column in the datasets containing the image encodings."
},
)
dataset_repo_or_path: str = field(
default=None,
metadata={"help": "The dataset repository containing encoded files."},
)
train_file: Optional[str] = field(
default=None,
metadata={
"help": "The input training data file (glob & braceexpand acceptable)."
},
)
validation_file: Optional[str] = field(
default=None,
metadata={
"help": "An optional input evaluation data file (glob & braceexpand acceptable)."
},
)
# data loading should not be a bottleneck so we use "streaming" mode by default
streaming: Optional[bool] = field(
default=True,
metadata={"help": "Whether to stream the dataset."},
)
use_auth_token: Optional[bool] = field(
default=False,
metadata={
"help": "Whether to use the authentication token for private datasets."
},
)
shard_by_host: Optional[bool] = field(
default=False,
metadata={
"help": "Whether to shard data files by host in multi-host environments."
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of training examples."
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples."
},
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={
"help": "The number of processes to use for the preprocessing. Not used in streaming mode."
},
)
overwrite_cache: bool = field(
default=False,
metadata={
"help": "Overwrite the cached training and evaluation sets. Not used in streaming mode."
},
)
# default seed of None ensures we don't repeat the same items if script was interrupted during an epoch
seed_dataset: int = field(
default=None,
metadata={
"help": "Random seed for the dataset that will be set at the beginning of training."
},
)
def __post_init__(self):
if self.dataset_repo_or_path is None:
raise ValueError("Need a dataset repository or path.")
@dataclass
class TrainingArguments:
"""
Arguments pertaining to training parameters.
"""
output_dir: str = field(
metadata={
"help": "The output directory where the model predictions and checkpoints will be written."
},
)
overwrite_output_dir: bool = field(
default=False,
metadata={
"help": (
"Overwrite the content of the output directory. "
"Use this to continue training if output_dir points to a checkpoint directory."
)
},
)
do_train: bool = field(default=False, metadata={"help": "Whether to run training."})
do_eval: bool = field(
default=False, metadata={"help": "Whether to run eval on the validation set."}
)
per_device_train_batch_size: int = field(
default=8, metadata={"help": "Batch size per GPU/TPU/CPU for training."}
)
per_device_eval_batch_size: Optional[int] = field(
default=None,
metadata={
"help": "Batch size per GPU/TPU/CPU for evaluation. Same as training batch size if not set."
},
)
gradient_accumulation_steps: int = field(
default=1,
metadata={
"help": "Number of updates steps to accumulate before performing an update pass."
},
)
learning_rate: float = field(
default=5e-5, metadata={"help": "The initial learning rate."}
)
optim: str = field(
default="distributed_shampoo",
metadata={
"help": 'The optimizer to use. Can be "distributed_shampoo" (default), "adam" or "adafactor"'
},
)
beta1: float = field(
default=0.9,
metadata={"help": "Beta1 for Adam & Distributed Shampoo."},
)
beta2: float = field(
default=0.999,
metadata={"help": "Beta2 for for Adam & Distributed Shampoo."},
)
adam_epsilon: float = field(
default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."}
)
max_grad_norm: float = field(
default=1.0, metadata={"help": "Max gradient norm for Adafactor."}
)
block_size: int = field(
default=1024,
metadata={"help": "Chunked size for large layers with Distributed Shampoo."},
)
start_preconditioning_step: int = field(
default=100,
metadata={"help": "Number of steps before starting to update preconditioner."},
)
preconditioning_compute_steps: int = field(
default=10, metadata={"help": "Number of steps to update preconditioner."}
)
skip_preconditioning_dim_size_gt: int = field(
default=4096,
metadata={"help": "Max size for preconditioning with Distributed Shampoo."},
)
optim_quantized: bool = field(
default=False,
metadata={
"help": "Whether to quantize optimizer (only supported with Distributed Shampoo)."
},
)
num_train_epochs: int = field(
default=3, metadata={"help": "Total number of training epochs to perform."}
)
warmup_steps: int = field(
default=0, metadata={"help": "Linear warmup over warmup_steps."}
)
lr_decay: str = field(
default=None,
metadata={
"help": "Decay to be used in the learning rate scheduler. Can be None (default), linear or exponential."
},
)
lr_transition_steps: int = field(
default=None,
metadata={
"help": "Number of transition steps associated with learning rate decay when using exponential decay."
},
)
lr_decay_rate: float = field(
default=None,
metadata={
"help": "Decay rate associated with learning rate when using exponential decay."
},
)
lr_staircase: bool = field(
default=False,
metadata={
"help": "Whether to use staircase or continuous learning rate when using exponential decay."
},
)
logging_steps: int = field(
default=40, metadata={"help": "Log every X updates steps."}
)
eval_steps: int = field(
default=400, metadata={"help": "Run an evaluation every X steps."}
)
save_steps: int = field(
default=4000, metadata={"help": "Save checkpoint every X updates steps."}
)
log_model: bool = field(
default=False,
metadata={"help": "Log model to wandb at `save_steps` frequency."},
)
seed_model: int = field(
default=42,
metadata={
"help": "Random seed for the model that will be set at the beginning of training."
},
)
wandb_entity: Optional[str] = field(
default=None,
metadata={"help": "The wandb entity to use (for teams)."},
)
wandb_project: str = field(
default="dalle-mini",
metadata={"help": "The name of the wandb project."},
)
wandb_job_type: str = field(
default="Seq2Seq",
metadata={"help": "The name of the wandb job type."},
)
assert_TPU_available: bool = field(
default=False,
metadata={"help": "Verify that TPU is not in use."},
)
mp_devices: Optional[int] = field(
default=1,
metadata={
"help": "Number of devices required for model parallelism. The other dimension of available devices is used for data parallelism."
},
)
dp_devices: int = field(init=False)
def __post_init__(self):
assert self.optim in [
"distributed_shampoo",
"adam",
"adafactor",
], f"Selected optimizer not supported: {self.optim}"
if self.per_device_eval_batch_size is None:
self.per_device_eval_batch_size = self.per_device_train_batch_size
if (
os.path.exists(self.output_dir)
and os.listdir(self.output_dir)
and self.do_train
and not self.overwrite_output_dir
):
raise ValueError(
f"Output directory ({self.output_dir}) already exists and is not empty."
"Use --overwrite_output_dir to overcome."
)
assert (
jax.device_count() % self.mp_devices == 0
), f"Number of available devices ({jax.device_count()} must be divisible by number of devices used for model parallelism ({self.mp_devices})."
self.dp_devices = jax.device_count() // self.mp_devices
class TrainState(train_state.TrainState):
dropout_rng: jnp.ndarray = None
epoch: int = 0
train_time: float = 0.0 # total time the model trained
train_samples: int = 0 # number of samples seen
class MetricsLogger:
def __init__(self, step):
self.step = step
self.time = time.perf_counter()
self.state_dict = {}
def update_state_metrics(self, state):
"""Update internal state metrics (logged at each call to be used as x-axis)"""
self.state_dict = {
f'train/{k.split("_")[-1]}': getattr(state, k)
for k in ["step", "epoch", "train_time", "train_samples"]
}
# timing metrics
new_step = int(state.step)
new_time = time.perf_counter()
if new_step > self.step:
time_per_step = (new_time - self.time) / (new_step - self.step)
self.step = new_step
self.time = new_time
self.state_dict["train/time_per_step"] = time_per_step
def log(self, metrics, prefix=None):
if jax.process_index() == 0:
log_metrics = {
f"{prefix}/{k}" if prefix is not None else k: v
for k, v in metrics.items()
}
wandb.log({**log_metrics, **self.state_dict})
def main():
# See all possible arguments by passing the --help flag to this script.
parser = HfArgumentParser(
(ModelArguments, DataTrainingArguments, TrainingArguments)
)
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(
json_file=os.path.abspath(sys.argv[1])
)
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
# Setup logging, we only want one process per machine to log things on the screen.
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
if jax.process_index() == 0:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# Set the verbosity to info of the Transformers logger (on main process only):
logger.info(f"Training/evaluation parameters {training_args}")
# Load dataset
dataset = Dataset(
**asdict(data_args),
do_train=training_args.do_train,
do_eval=training_args.do_eval,
)
logger.info(f"Local TPUs: {jax.local_device_count()}")
logger.info(f"Global TPUs: {jax.device_count()}")
if training_args.assert_TPU_available:
assert (
jax.local_device_count() == 8
), "TPUs in use, please check running processes"
# Set up wandb run
if jax.process_index() == 0:
wandb.init(
entity=training_args.wandb_entity,
project=training_args.wandb_project,
job_type=training_args.wandb_job_type,
config=parser.parse_args(),
)
# Set up our new model config
if model_args.config_name:
config = DalleBartConfig.from_pretrained(model_args.config_name)
else:
config = None
# Load or create new model
if model_args.model_name_or_path:
model = DalleBart.from_pretrained(
model_args.model_name_or_path,
config=config,
seed=training_args.seed_model,
dtype=getattr(jnp, model_args.dtype),
abstract_init=True,
load_on_cpu=True,
)
else:
model = DalleBart(
config,
seed=training_args.seed_model,
dtype=getattr(jnp, model_args.dtype),
load_on_cpu=True,
)
# Load tokenizer
if model_args.tokenizer_name is not None:
tokenizer = DalleBartTokenizer.from_pretrained(
model_args.tokenizer_name, use_fast=True
)
else:
tokenizer = DalleBartTokenizer.from_pretrained(
model_args.model_name_or_path,
use_fast=True,
)
# get PartitionSpec for model params (required to be a dict)
param_spec = set_partitions(model.params)
# convert params to frozen dict
model._params = freeze(model.params)
# Preprocessing the datasets.
# We need to normalize and tokenize inputs and targets.
dataset.preprocess(
tokenizer=tokenizer,
decoder_start_token_id=model.config.decoder_start_token_id,
normalize_text=model.config.normalize_text,
max_length=model.config.max_text_length,
)
# Initialize our training
rng = jax.random.PRNGKey(training_args.seed_model)
rng, dropout_rng = jax.random.split(rng)
# Store some constant
num_epochs = training_args.num_train_epochs
# batch size
minibatch_size = (
training_args.per_device_train_batch_size * training_args.dp_devices
)
batch_size_per_node = minibatch_size * training_args.gradient_accumulation_steps
batch_size_per_step = batch_size_per_node * jax.process_count()
eval_batch_size = (
training_args.per_device_eval_batch_size * training_args.dp_devices
)
len_train_dataset, len_eval_dataset = dataset.length
steps_per_epoch = (
len_train_dataset // batch_size_per_node
if len_train_dataset is not None
else None
)
num_train_steps = (
steps_per_epoch * num_epochs if steps_per_epoch is not None else None
)
num_params = model.num_params
# Create learning rate schedule
def create_learning_rate_fn() -> Callable[[int], jnp.array]:
"""Create the learning rate function."""
warmup_fn = optax.linear_schedule(
init_value=0.0,
end_value=training_args.learning_rate,
transition_steps=training_args.warmup_steps,
)
if training_args.lr_decay is None:
return warmup_fn
elif training_args.lr_decay == "linear":
assert (
num_train_steps is not None
), "linear decay requires knowing the dataset length"
decay_fn = optax.linear_schedule(
init_value=training_args.learning_rate,
end_value=0,
transition_steps=num_train_steps - training_args.warmup_steps,
)
elif training_args.lr_decay == "exponential":
decay_fn = optax.exponential_decay(
init_value=training_args.learning_rate,
transition_steps=training_args.lr_transition_steps,
decay_rate=training_args.lr_decay_rate,
staircase=training_args.lr_staircase,
)
schedule_fn = optax.join_schedules(
schedules=[warmup_fn, decay_fn], boundaries=[training_args.warmup_steps]
)
return schedule_fn
learning_rate_fn = create_learning_rate_fn()
# create adam optimizer
if training_args.optim == "distributed_shampoo":
# parameters from https://github.com/tensorflow/lingvo/blob/03ee9d7cd50764b0424c7c863733c91fc0b053ec/lingvo/jax/optimizers.py#L729
optimizer = distributed_shampoo(
learning_rate_fn,
block_size=training_args.block_size,
beta1=training_args.beta1,
beta2=training_args.beta2,
diagonal_epsilon=1e-10,
matrix_epsilon=1e-8,
start_preconditioning_step=training_args.start_preconditioning_step,
preconditioning_compute_steps=training_args.preconditioning_compute_steps,
statistics_compute_steps=1,
best_effort_shape_interpretation=True,
graft_type=GraftingType.RMSPROP_NORMALIZED,
nesterov=False,
exponent_override=0,
statistics_partition_spec=PartitionSpec(None, "batch", None),
preconditioner_partition_spec=PartitionSpec("batch", None, None),
num_devices_for_pjit=training_args.dp_devices,
shard_optimizer_states=True,
inverse_failure_threshold=0.1,
moving_average_for_momentum=True,
skip_preconditioning_dim_size_gt=training_args.skip_preconditioning_dim_size_gt,
clip_by_scaled_gradient_norm=None,
precision=jax.lax.Precision.HIGHEST,
best_effort_memory_usage_reduction=training_args.optim_quantized,
)
# get the real optimizer and helper functions
update_fn = optimizer.update
optimizer = optimizer.init(model.params)
opt_fn = NamedTuple("opt_fn", pspec_fn=Any, shape_and_dtype_fn=Any)(
optimizer.pspec_fn, optimizer.shape_and_dtype_fn
)
optimizer = optax.GradientTransformation(optimizer.init_fn, update_fn)
elif training_args.optim == "adam":
optimizer = optax.adamw(
learning_rate=learning_rate_fn,
b1=training_args.beta1,
b2=training_args.beta2,
eps=training_args.adam_epsilon,
)
elif training_args.optim == "adafactor":
# We use the default parameters here to initialize adafactor,
# For more details about the parameters please check https://github.com/deepmind/optax/blob/ed02befef9bf81cbbf236be3d2b0e032e9ed4a40/optax/_src/alias.py#L74
optimizer = optax.adafactor(
learning_rate=learning_rate_fn,
clipping_threshold=training_args.max_grad_norm,
)
# get PartitionSpec for optimizer state
def get_opt_state_spec_and_shape(param_spec):
# get opt_state shape without actual init
opt_state_shape = jax.eval_shape(optimizer.init, model.params)
if training_args.optim == "adam":
def _opt_state_spec_per_leaf(x):
if isinstance(x, FrozenDict):
# variables with same structure as params
return param_spec
else:
# other variables such as count
return None
opt_state_spec = jax.tree_map(
_opt_state_spec_per_leaf,
opt_state_shape,
# return None spec for empty elements
is_leaf=lambda x: isinstance(x, (FrozenDict, optax.EmptyState)),
)
elif training_args.optim == "adafactor":
# factorized state must be replicated (rank different than params)
opt_state_spec = None
elif training_args.optim == "distributed_shampoo":
opt_state_spec = opt_fn.pspec_fn(
params=model.params,
params_partition_spec=param_spec,
partition_spec_for_statistics=PartitionSpec(None, "batch", None),
)
else:
raise NotImplementedError
return opt_state_spec, opt_state_shape
opt_state_spec, opt_state_shape = get_opt_state_spec_and_shape(param_spec)
# create a mesh
mesh_shape = (training_args.dp_devices, training_args.mp_devices)
devices = np.asarray(jax.devices()).reshape(*mesh_shape)
mesh = maps.Mesh(devices, ("batch", "mp"))
# define state spec
state_spec = TrainState(
params=param_spec,
opt_state=opt_state_spec,
dropout_rng=None,
step=None,
epoch=None,
train_time=None,
train_samples=None,
apply_fn=model.__call__,
tx=optimizer,
)
# create training state
with maps.mesh(mesh.devices, mesh.axis_names):
if not model_args.restore_state:
def init_state(params):
return TrainState.create(
apply_fn=model.__call__,
tx=optimizer,
params=params,
dropout_rng=dropout_rng,
)
state = pjit(
init_state,
in_axis_resources=(param_spec,),
out_axis_resources=state_spec,
donate_argnums=(0,),
)(model.params)
else:
# get state files from artifact
if jax.process_index() == 0:
artifact = wandb.run.use_artifact(model_args.state_artifact)
else:
artifact = wandb.Api().artifact(model_args.state_artifact)
artifact_dir = artifact.download()
# restore opt_state
with (Path(artifact_dir) / "opt_state.msgpack").open("rb") as f:
opt_state = from_bytes(opt_state_shape, f.read())
# restore other attributes
with (Path(artifact_dir) / "training_state.json").open("r") as f:
attr_state = json.load(f)
def restore_state(params, opt_state):
return TrainState(
apply_fn=model.__call__,
tx=optimizer,
params=params,
opt_state=opt_state,
dropout_rng=dropout_rng,
**attr_state,
)
state = pjit(
restore_state,
in_axis_resources=(param_spec, opt_state_spec),
out_axis_resources=state_spec,
donate_argnums=(0, 1),
)(model.params, opt_state)
# remove opt_state from CPU
del opt_state
# free memory
del model._params, opt_state_spec, opt_state_shape
# define batch specs
keys = ["attention_mask", "decoder_input_ids", "input_ids", "labels"]
batch_spec = freeze({k: PartitionSpec("batch") for k in keys})
grad_batch_spec = freeze({k: PartitionSpec(None, "batch") for k in keys})
# label smoothed cross entropy
def loss_fn(logits, labels):
loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1]))
loss = loss.mean()
return loss
# Define gradient update step fn
def train_step(state, batch, delta_time):
# batch is (gradient_accumulation_steps, minibatch_size, ...)
# check correct batch shape during compilation
assert batch["labels"].shape[0:3] == (
training_args.gradient_accumulation_steps,
training_args.dp_devices,
training_args.per_device_train_batch_size,
), f"Expected label batch of shape dp_devices x gradient_acculumation x batch_per_device and got {batch['labels'].shape}"
# get a minibatch (one gradient accumulation slice)
def get_minibatch(batch, grad_idx):
return jax.tree_map(
lambda x: jax.lax.dynamic_index_in_dim(x, grad_idx, keepdims=False),
batch,
)
def compute_loss(params, minibatch, dropout_rng):
# minibatch has dim (batch_size, ...)
minibatch, labels = minibatch.pop("labels")
logits = state.apply_fn(
**minibatch, params=params, dropout_rng=dropout_rng, train=True
)[0]
return loss_fn(logits, labels)
grad_fn = jax.value_and_grad(compute_loss)
def loss_and_grad(grad_idx, dropout_rng):
# minibatch at grad_idx, shape (dp_devices, per_device_train_batch_size, ...)
minibatch = get_minibatch(batch, grad_idx)
# ensure batch is sharded over devices
minibatch = jax.tree_map(
lambda x: with_sharding_constraint(x, PartitionSpec("batch")), minibatch
)
# calculate loss and grads independently per dp_device
loss_grads = jax.vmap(grad_fn, in_axes=(None, 0, None), out_axes=(0, 0))(
state.params, minibatch, dropout_rng
)
# ensure they are sharded over devices
loss_grads = jax.tree_map(
lambda x: with_sharding_constraint(x, PartitionSpec("batch")),
loss_grads,
)
# average across all devices
loss_grads = jax.tree_map(lambda x: jnp.mean(x, axis=0), loss_grads)
# return loss and grads
return loss_grads
# create a new rng
dropout_rng, _ = jax.random.split(state.dropout_rng)
# use a different rng per node
dropout_rng = jax.random.fold_in(dropout_rng, jax.process_index())
if training_args.gradient_accumulation_steps == 1:
def batch_step(dropout_rng):
dropout_rng, new_dropout_rng = jax.random.split(dropout_rng)
loss_grad = loss_and_grad(0, dropout_rng)
return loss_grad, new_dropout_rng
loss_grad, dropout_rng = batch_step(dropout_rng)
else:
# create initial state for per_minibatch_step loop
init_cumul_loss_grad = (
0.0,
jax.tree_map(jnp.zeros_like, state.params),
)
init_minibatch_step = (init_cumul_loss_grad, dropout_rng)
# accumulate gradients
def cumul_minibatch_step(grad_idx, cumul_loss_grad_dropout):
cumul_loss_grad, dropout_rng = cumul_loss_grad_dropout
dropout_rng, new_dropout_rng = jax.random.split(dropout_rng)
loss_grad = loss_and_grad(grad_idx, dropout_rng)
cumul_loss_grad = jax.tree_map(jnp.add, cumul_loss_grad, loss_grad)
return cumul_loss_grad, new_dropout_rng
# loop over gradients
loss_grad, dropout_rng = jax.lax.fori_loop(
0,
training_args.gradient_accumulation_steps,
cumul_minibatch_step,
init_minibatch_step,
)
# sum -> mean
loss_grad = jax.tree_map(
lambda x: x / training_args.gradient_accumulation_steps, loss_grad
)
# update state
loss, grads = loss_grad
state = state.apply_gradients(
grads=grads,
dropout_rng=dropout_rng,
train_time=state.train_time + delta_time,
train_samples=state.train_samples + batch_size_per_step,
)
metrics = {
"loss": loss,
"learning_rate": learning_rate_fn(state.step),
}
return state, metrics
# Define eval fn
def eval_step(state, batch):
batch, labels = batch.pop("labels")
logits = model(**batch, params=state.params, train=False)[0]
loss = loss_fn(logits, labels)
return loss
# Create parallel version of the train and eval step
p_train_step = pjit(
train_step,
in_axis_resources=(state_spec, grad_batch_spec, None),
out_axis_resources=(state_spec, None),
donate_argnums=(0,),
)
p_eval_step = pjit(
eval_step,
in_axis_resources=(state_spec, batch_spec),
out_axis_resources=None,
)
logger.info("***** Running training *****")
logger.info(f" Num examples = {len_train_dataset}")
logger.info(f" Num Epochs = {num_epochs}")
logger.info(
f" Batch size per device = {training_args.per_device_train_batch_size}"
)
logger.info(f" Number of devices = {jax.device_count()}")
logger.info(
f" Gradient accumulation steps = {training_args.gradient_accumulation_steps}"
)
logger.info(f" Batch size per update = {batch_size_per_step}")
logger.info(f" Model parameters = {num_params:,}")
epochs = tqdm(
range(state.epoch, num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0
)
# init variables
last_time = time.perf_counter()
train_metrics = None
step = int(state.step)
metrics_logger = MetricsLogger(step)
if jax.process_index() == 0:
# set default x-axis as 'train/step'
wandb.define_metric("*", step_metric="train/step")
# add interesting config parameters
wandb.config.update(
{
"len_train_dataset": len_train_dataset,
"len_eval_dataset": len_eval_dataset,
"batch_size_per_step": batch_size_per_step,
"num_params": num_params,
"num_devices": jax.device_count(),
}
)
def run_evaluation():
# ======================== Evaluating ==============================
if training_args.do_eval:
eval_loader = dataset.dataloader("eval", eval_batch_size)
eval_steps = (
len_eval_dataset // eval_batch_size
if len_eval_dataset is not None
else None
)
eval_loss = []
for batch in tqdm(
eval_loader,
desc="Evaluating...",
position=2,
leave=False,
total=eval_steps,
):
# freeze batch to pass safely to JAX transforms
batch = freeze(batch)
# accumulate losses async
eval_loss.append(p_eval_step(state, batch))
# get the mean of the loss
eval_loss = jnp.stack(eval_loss)
eval_loss = jnp.mean(eval_loss)
eval_metrics = {"loss": eval_loss}
# log metrics
metrics_logger.log(eval_metrics, prefix="eval")
# Print metrics and update progress bar
desc = f"Epoch... ({epoch + 1}/{num_epochs} | Eval Loss: {eval_metrics['loss']})"
epochs.write(desc)
epochs.desc = desc
return eval_metrics
def run_save_model(state, eval_metrics=None):
if jax.process_index() == 0:
params = jax.device_get(state.params)
# save model locally
model.save_pretrained(
training_args.output_dir,
params=params,
)
# save tokenizer
tokenizer.save_pretrained(training_args.output_dir)
# save state
opt_state = jax.device_get(state.opt_state)
with (Path(training_args.output_dir) / "opt_state.msgpack").open("wb") as f:
f.write(to_bytes(opt_state))
state_dict = {
k: jax.device_get(getattr(state, k)).item()
for k in ["step", "epoch", "train_time", "train_samples"]
}
with (Path(training_args.output_dir) / "training_state.json").open(
"w"
) as f:
json.dump(
state_dict,
f,
)
# save to W&B
if training_args.log_model:
# save some space
c = wandb.wandb_sdk.wandb_artifacts.get_artifacts_cache()
c.cleanup(wandb.util.from_human_size("10GB"))
metadata = dict(state_dict)
metadata["num_params"] = num_params
if eval_metrics is not None:
metadata["eval"] = eval_metrics
# create model artifact
artifact = wandb.Artifact(
name=f"model-{wandb.run.id}",
type="DalleBart_model",
metadata=metadata,
)
for filename in [
"config.json",
"flax_model.msgpack",
"merges.txt",
"special_tokens_map.json",
"tokenizer.json",
"tokenizer_config.json",
"vocab.json",
]:
artifact.add_file(f"{Path(training_args.output_dir) / filename}")
wandb.run.log_artifact(artifact)
# create state artifact
artifact_state = wandb.Artifact(
name=f"state-{wandb.run.id}",
type="DalleBart_state",
metadata=metadata,
)
for filename in ["opt_state.msgpack", "training_state.json"]:
artifact_state.add_file(
f"{Path(training_args.output_dir) / filename}"
)
wandb.run.log_artifact(artifact_state)
with maps.mesh(mesh.devices, mesh.axis_names):
for epoch in epochs:
state.replace(epoch=epoch)
# ======================== Training ================================
metrics_logger.update_state_metrics(state)
metrics_logger.log({})
# Generate an epoch by shuffling sampling indices from the train dataset
train_loader = dataset.dataloader(
"train",
batch_size_per_node,
epoch,
)
# train
for batch in tqdm(
train_loader,
desc="Training...",
position=1,
leave=False,
total=steps_per_epoch,
):
# calculate delta time (we have a lag of one step but it's ok)
new_time = time.perf_counter()
delta_time = new_time - last_time
last_time = new_time
# reshape data into (gradient_accumulation_steps, dp_devices, batch_per_dp, ...)
batch = jax.tree_map(
lambda x: x.reshape(
(
training_args.gradient_accumulation_steps,
training_args.dp_devices,
training_args.per_device_train_batch_size,
)
+ x.shape[1:]
),
batch,
)
# freeze batch to pass safely to jax transforms
batch = freeze(batch)
# train step
state, train_metrics = p_train_step(state, batch, delta_time)
step += 1
if step % training_args.logging_steps == 0 and jax.process_index() == 0:
metrics_logger.update_state_metrics(state)
metrics_logger.log(train_metrics, prefix="train")
eval_metrics = None
if step % training_args.eval_steps == 0:
eval_metrics = run_evaluation()
if step % training_args.save_steps == 0:
run_save_model(state, eval_metrics)
# log final train metrics
if train_metrics is not None:
metrics_logger.update_state_metrics(state)
metrics_logger.log(train_metrics, prefix="train")
epochs.write(
f"Epoch... ({epoch + 1}/{num_epochs} | Loss: {train_metrics['loss']}, Learning Rate: {train_metrics['learning_rate']})"
)
# Final evaluation
eval_metrics = run_evaluation()
# save checkpoint after each epoch
run_save_model(state, eval_metrics)
if __name__ == "__main__":
main()
|