Spaces:
Running
Running
File size: 16,381 Bytes
82fad8c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 |
{
"cells": [
{
"cell_type": "markdown",
"id": "d0b72877",
"metadata": {},
"source": [
"# vqgan-jax-encoding-yfcc100m"
]
},
{
"cell_type": "markdown",
"id": "747733a4",
"metadata": {},
"source": [
"Same as `vqgan-jax-encoding-with-captions`, but for YFCC100M.\n",
"\n",
"This dataset was prepared by @borisdayma in Json lines format."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "3b59489e",
"metadata": {},
"outputs": [],
"source": [
"import io\n",
"\n",
"import requests\n",
"from PIL import Image\n",
"import numpy as np\n",
"from tqdm import tqdm\n",
"\n",
"import torch\n",
"import torchvision.transforms as T\n",
"import torchvision.transforms.functional as TF\n",
"from torchvision.transforms import InterpolationMode\n",
"from torch.utils.data import Dataset, DataLoader\n",
"from torchvision.datasets.folder import default_loader\n",
"\n",
"import jax\n",
"from jax import pmap"
]
},
{
"cell_type": "markdown",
"id": "511c3b9e",
"metadata": {},
"source": [
"## VQGAN-JAX model"
]
},
{
"cell_type": "markdown",
"id": "bb408f6c",
"metadata": {},
"source": [
"`dalle_mini` is a local package that contains the VQGAN-JAX model and other utilities."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "2ca50dc7",
"metadata": {},
"outputs": [],
"source": [
"from dalle_mini.vqgan_jax.modeling_flax_vqgan import VQModel"
]
},
{
"cell_type": "markdown",
"id": "7b60da9a",
"metadata": {},
"source": [
"We'll use a VQGAN trained by using Taming Transformers and converted to a JAX model."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "29ce8b15",
"metadata": {},
"outputs": [],
"source": [
"model = VQModel.from_pretrained(\"flax-community/vqgan_f16_16384\")"
]
},
{
"cell_type": "markdown",
"id": "c7c4c1e6",
"metadata": {},
"source": [
"## Dataset"
]
},
{
"cell_type": "markdown",
"id": "fd4c608e",
"metadata": {},
"source": [
"I splitted the files to do the process iteratively. Pandas struggles with memory and `datasets` has problems when filtering files, as described [in this issue](https://github.com/huggingface/datasets/issues/2644)."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "6c058636",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"from pathlib import Path"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "81b19eca",
"metadata": {},
"outputs": [],
"source": [
"yfcc100m = Path('/sddata/dalle-mini/YFCC100M_OpenAI_subset')\n",
"# Images are 'sharded' from the following directory\n",
"yfcc100m_images = yfcc100m/'data'/'images'\n",
"yfcc100m_metadata_splits = yfcc100m/'metadata_splitted'\n",
"yfcc100m_output = yfcc100m/'metadata_encoded'"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "40873de9",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_04'),\n",
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_25'),\n",
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_17'),\n",
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_10'),\n",
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_22'),\n",
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_28'),\n",
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_09'),\n",
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_03'),\n",
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_07'),\n",
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_26'),\n",
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_14'),\n",
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_19'),\n",
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_13'),\n",
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_21'),\n",
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_00'),\n",
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_02'),\n",
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_08'),\n",
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_11'),\n",
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_29'),\n",
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_23'),\n",
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_24'),\n",
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_16'),\n",
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_05'),\n",
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_01'),\n",
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_12'),\n",
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_18'),\n",
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_20'),\n",
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_27'),\n",
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_15'),\n",
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_06')]"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"all_splits = [x for x in yfcc100m_metadata_splits.iterdir() if x.is_file()]\n",
"all_splits"
]
},
{
"cell_type": "markdown",
"id": "f604e3c9",
"metadata": {},
"source": [
"### Cleanup"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "dea06b92",
"metadata": {},
"outputs": [],
"source": [
"def image_exists(root: str, name: str, ext: str):\n",
" image_path = (Path(root)/name[0:3]/name[3:6]/name).with_suffix(ext)\n",
" return image_path.exists()"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "1d34d7aa",
"metadata": {},
"outputs": [],
"source": [
"class YFC100Dataset(Dataset):\n",
" def __init__(self, image_list: pd.DataFrame, images_root: str, image_size: int, max_items=None):\n",
" \"\"\"\n",
" :param image_list: DataFrame with clean entries - all images must exist.\n",
" :param images_root: Root directory containing the images\n",
" :param image_size: Image size. Source images will be resized and center-cropped.\n",
" :max_items: Limit dataset size for debugging\n",
" \"\"\"\n",
" self.image_list = image_list\n",
" self.images_root = Path(images_root)\n",
" if max_items is not None: self.image_list = self.image_list[:max_items]\n",
" self.image_size = image_size\n",
" \n",
" def __len__(self):\n",
" return len(self.image_list)\n",
" \n",
" def _get_raw_image(self, i):\n",
" image_name = self.image_list.iloc[0].key\n",
" image_path = (self.images_root/image_name[0:3]/image_name[3:6]/image_name).with_suffix('.jpg')\n",
" return default_loader(image_path)\n",
" \n",
" def resize_image(self, image):\n",
" s = min(image.size)\n",
" r = self.image_size / s\n",
" s = (round(r * image.size[1]), round(r * image.size[0]))\n",
" image = TF.resize(image, s, interpolation=InterpolationMode.LANCZOS)\n",
" image = TF.center_crop(image, output_size = 2 * [self.image_size])\n",
" # FIXME: np.array is necessary in my installation, but it should be automatic\n",
" image = torch.unsqueeze(T.ToTensor()(np.array(image)), 0)\n",
" image = image.permute(0, 2, 3, 1).numpy()\n",
" return image\n",
" \n",
" def __getitem__(self, i):\n",
" image = self._get_raw_image(i)\n",
" image = self.resize_image(image)\n",
" # Just return the image, not the caption\n",
" return image"
]
},
{
"cell_type": "markdown",
"id": "62ad01c3",
"metadata": {},
"source": [
"## Encoding"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "88f36d0b",
"metadata": {},
"outputs": [],
"source": [
"def encode(model, batch):\n",
" print(\"jitting encode function\")\n",
" _, indices = model.encode(batch)\n",
"\n",
"# # FIXME: The model does not run in my computer (no cudNN currently installed) - faking it\n",
"# indices = np.random.randint(0, 16384, (batch.shape[0], 256))\n",
" return indices"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d1f45dd8",
"metadata": {},
"outputs": [],
"source": [
"#FIXME\n",
"# import random\n",
"# model = {}"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "1f35f0cb",
"metadata": {},
"outputs": [],
"source": [
"from flax.training.common_utils import shard\n",
"\n",
"def superbatch_generator(dataloader):\n",
" iter_loader = iter(dataloader)\n",
" for batch in iter_loader:\n",
" batch = batch.squeeze(1)\n",
" # Skip incomplete last batch\n",
" if batch.shape[0] == dataloader.batch_size:\n",
" yield shard(batch)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "2210705b",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import jax\n",
"\n",
"def encode_captioned_dataset(dataset, output_jsonl, batch_size=32, num_workers=16):\n",
" if os.path.isfile(output_jsonl):\n",
" print(f\"Destination file {output_jsonl} already exists, please move away.\")\n",
" return\n",
" \n",
" num_tpus = jax.device_count()\n",
" dataloader = DataLoader(dataset, batch_size=num_tpus*batch_size, num_workers=num_workers)\n",
" superbatches = superbatch_generator(dataloader)\n",
" \n",
" p_encoder = pmap(lambda batch: encode(model, batch))\n",
"\n",
" # We save each superbatch to avoid reallocation of buffers as we process them.\n",
" # We keep the file open to prevent excessive file seeks.\n",
" with open(output_jsonl, \"w\") as file:\n",
" iterations = len(dataset) // (batch_size * num_tpus)\n",
" for n in tqdm(range(iterations)):\n",
" superbatch = next(superbatches)\n",
" encoded = p_encoder(superbatch.numpy())\n",
" encoded = encoded.reshape(-1, encoded.shape[-1])\n",
"\n",
" # Extract fields from the dataset internal `image_list` property, and save to disk\n",
" # We need to read from the df because the Dataset only returns images\n",
" start_index = n * batch_size * num_tpus\n",
" end_index = (n+1) * batch_size * num_tpus\n",
" keys = dataset.image_list[\"key\"][start_index:end_index].values\n",
" captions = dataset.image_list[\"caption\"][start_index:end_index].values\n",
"# encoded_as_string = list(map(lambda item: np.array2string(item, separator=',', max_line_width=50000, formatter={'int':lambda x: str(x)}), encoded))\n",
" batch_df = pd.DataFrame.from_dict({\"key\": keys, \"caption\": captions, \"encoding\": encoded})\n",
" batch_df.to_json(file, orient='records', lines=True)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "7704863d",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Processing /sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_04\n",
"54024 selected from 500000 total entries\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"INFO:absl:Starting the local TPU driver.\n",
"INFO:absl:Unable to initialize backend 'tpu_driver': Not found: Unable to find driver in registry given worker: local://\n",
"INFO:absl:Unable to initialize backend 'tpu': Invalid argument: TpuPlatform is not available.\n",
" 0%| | 0/31 [00:00<?, ?it/s]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"jitting encode function\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|███████████████████████████████████████████████████████████████████████████████| 31/31 [00:02<00:00, 10.61it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Processing /sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_25\n",
"99530 selected from 500000 total entries\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
" 3%|██▌ | 1/31 [00:01<00:53, 1.79s/it]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"jitting encode function\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|███████████████████████████████████████████████████████████████████████████████| 31/31 [00:03<00:00, 9.92it/s]\n"
]
}
],
"source": [
"for split in all_splits:\n",
" print(f\"Processing {split}\")\n",
" df = pd.read_json(split, orient=\"records\", lines=True)\n",
" df['image_exists'] = df.apply(lambda row: image_exists(yfcc100m_images, row['key'], '.' + row['ext']), axis=1)\n",
" print(f\"{len(df[df.image_exists])} selected from {len(df)} total entries\")\n",
" \n",
" df = df[df.image_exists]\n",
" captions = df.apply(lambda row: ' '.join([row[\"title_clean\"], row[\"description_clean\"]]), axis=1)\n",
" df[\"caption\"] = captions.values\n",
" \n",
" dataset = YFC100Dataset(\n",
" image_list = df,\n",
" images_root = yfcc100m_images,\n",
" image_size = 256,\n",
"# max_items = 2000,\n",
" )\n",
" \n",
" encode_captioned_dataset(dataset, yfcc100m_output/split.name, batch_size=64, num_workers=16)"
]
},
{
"cell_type": "markdown",
"id": "8953dd84",
"metadata": {},
"source": [
"----"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|