Spaces:
Running
Running
File size: 15,411 Bytes
378a628 91d8a29 378a628 b8bbe68 353365f c85fbb6 b8bbe68 353365f 378a628 91d8a29 378a628 91d8a29 378a628 91d8a29 c85fbb6 91d8a29 ff051c9 91d8a29 ff051c9 91d8a29 ff051c9 91d8a29 c85fbb6 91d8a29 378a628 353365f 91d8a29 353365f 91d8a29 353365f 38705a9 bf3640d 353365f bf3640d 353365f 378a628 91d8a29 378a628 91d8a29 378a628 2d169e3 bf3640d 9a553a4 378a628 91d8a29 bf3640d 353365f bf3640d c85fbb6 9a553a4 c85fbb6 9a553a4 353365f 91d8a29 c85fbb6 91d8a29 c85fbb6 91d8a29 378a628 2d169e3 38705a9 2d169e3 353365f b8bbe68 378a628 91d8a29 378a628 ff051c9 bf3640d ff051c9 bf3640d ff051c9 378a628 91d8a29 378a628 bf3640d ff051c9 bf3640d 378a628 91d8a29 378a628 bf3640d 378a628 9a553a4 ff051c9 378a628 91d8a29 bf3640d 378a628 bf3640d 378a628 91d8a29 ff051c9 378a628 ff051c9 378a628 91d8a29 ff051c9 353365f 91d8a29 ff051c9 9a553a4 2d169e3 ff051c9 91d8a29 ff051c9 9a553a4 ff051c9 2d169e3 ff051c9 91d8a29 ff051c9 2d169e3 ff051c9 c85fbb6 ff051c9 2d169e3 ff051c9 2d169e3 9a553a4 c85fbb6 9a553a4 ff051c9 9a553a4 353365f bf3640d 378a628 b8bbe68 ff051c9 bf3640d b8bbe68 378a628 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "4ff2a984-b8b2-4a69-89cf-0d16da2393c8",
"metadata": {},
"outputs": [],
"source": [
"import tempfile\n",
"from functools import partial\n",
"import random\n",
"import numpy as np\n",
"from PIL import Image\n",
"from tqdm.notebook import tqdm\n",
"import jax\n",
"import jax.numpy as jnp\n",
"from flax.training.common_utils import shard, shard_prng_key\n",
"from flax.jax_utils import replicate\n",
"import wandb\n",
"from dalle_mini.model import CustomFlaxBartForConditionalGeneration\n",
"from vqgan_jax.modeling_flax_vqgan import VQModel\n",
"from transformers import BartTokenizer, CLIPProcessor, FlaxCLIPModel\n",
"from dalle_mini.text import TextNormalizer"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "23e00271-941c-4e1b-b6a9-107a1b77324d",
"metadata": {},
"outputs": [],
"source": [
"run_ids = ['3kaut6e8']\n",
"ENTITY, PROJECT = 'wandb', 'hf-flax-dalle-mini'\n",
"VQGAN_REPO, VQGAN_COMMIT_ID = 'dalle-mini/vqgan_imagenet_f16_16384', None\n",
"normalize_text = False\n",
"latest_only = True # log only latest or all versions\n",
"suffix = '' # mainly for duplicate inference runs with a deleted version\n",
"add_clip_32 = True"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "92f4557c-fd7f-4edc-81c2-de0b0a10c270",
"metadata": {},
"outputs": [],
"source": [
"run_ids = ['k76r0v39']\n",
"ENTITY, PROJECT = 'dalle-mini', 'dalle-mini' # used only for training run\n",
"VQGAN_REPO, VQGAN_COMMIT_ID = 'dalle-mini/vqgan_imagenet_f16_16384', None\n",
"normalize_text = True\n",
"latest_only = True # log only latest or all versions\n",
"suffix = '' # mainly for duplicate inference runs with a deleted version\n",
"add_clip_32 = False"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "93b2e24b-f0e5-4abe-a3ec-0aa834cc3bf3",
"metadata": {},
"outputs": [],
"source": [
"batch_size = 8\n",
"num_images = 128\n",
"top_k = 8\n",
"text_normalizer = TextNormalizer() if normalize_text else None\n",
"padding_item = 'NONE'\n",
"seed = random.randint(0, 2**32-1)\n",
"key = jax.random.PRNGKey(seed)\n",
"api = wandb.Api()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c6a878fa-4bf5-4978-abb5-e235841d765b",
"metadata": {},
"outputs": [],
"source": [
"vqgan = VQModel.from_pretrained(VQGAN_REPO, revision=VQGAN_COMMIT_ID)\n",
"clip = FlaxCLIPModel.from_pretrained(\"openai/clip-vit-base-patch16\")\n",
"processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-base-patch16\")\n",
"clip_params = replicate(clip.params)\n",
"vqgan_params = replicate(vqgan.params)\n",
"\n",
"if add_clip_32:\n",
" clip32 = FlaxCLIPModel.from_pretrained(\"openai/clip-vit-base-patch32\")\n",
" processor32 = CLIPProcessor.from_pretrained(\"openai/clip-vit-base-patch32\")\n",
" clip32_params = replicate(clip32.params)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a500dd07-dbc3-477d-80d4-2b73a3b83ef3",
"metadata": {},
"outputs": [],
"source": [
"@partial(jax.pmap, axis_name=\"batch\")\n",
"def p_decode(indices, params):\n",
" return vqgan.decode_code(indices, params=params)\n",
"\n",
"@partial(jax.pmap, axis_name=\"batch\")\n",
"def p_clip(inputs, params):\n",
" logits = clip(params=params, **inputs).logits_per_image\n",
" return logits\n",
"\n",
"if add_clip_32:\n",
" @partial(jax.pmap, axis_name=\"batch\")\n",
" def p_clip32(inputs, params):\n",
" logits = clip32(params=params, **inputs).logits_per_image\n",
" return logits"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ebf4f7bf-2efa-46cc-b3f4-2d7a54f7b2cb",
"metadata": {},
"outputs": [],
"source": [
"clip_params['logit_scale']"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e57797ab-0b3a-4490-be58-03d8d1c23fe9",
"metadata": {},
"outputs": [],
"source": [
"with open('samples.txt', encoding='utf8') as f:\n",
" samples = [l.strip() for l in f.readlines()]\n",
" # make list multiple of batch_size by adding elements\n",
" samples_to_add = [padding_item] * (-len(samples) % batch_size)\n",
" samples.extend(samples_to_add)\n",
" # reshape\n",
" samples = [samples[i:i+batch_size] for i in range(0, len(samples), batch_size)]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f3e02d9d-4ee1-49e7-a7bc-4d8b139e9614",
"metadata": {},
"outputs": [],
"source": [
"def get_artifact_versions(run_id, latest_only=False):\n",
" try:\n",
" if latest_only:\n",
" return [api.artifact(type='bart_model', name=f'{ENTITY}/{PROJECT}/model-{run_id}:latest')]\n",
" else:\n",
" return api.artifact_versions(type_name='bart_model', name=f'{ENTITY}/{PROJECT}/model-{run_id}', per_page=10000)\n",
" except:\n",
" return []"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f0d7ed17-7abb-4a31-ab3c-a12b9039a570",
"metadata": {},
"outputs": [],
"source": [
"def get_training_config(run_id):\n",
" training_run = api.run(f'{ENTITY}/{PROJECT}/{run_id}')\n",
" config = training_run.config\n",
" return config"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7e784a43-626d-4e8d-9e47-a23775b2f35f",
"metadata": {},
"outputs": [],
"source": [
"# retrieve inference run details\n",
"def get_last_inference_version(run_id):\n",
" try:\n",
" inference_run = api.run(f'dalle-mini/dalle-mini/{run_id}-clip16{suffix}')\n",
" return inference_run.summary.get('version', None)\n",
" except:\n",
" return None"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d1cc9993-1bfc-4ec6-a004-c056189c42ac",
"metadata": {},
"outputs": [],
"source": [
"# compile functions - needed only once per run\n",
"def pmap_model_function(model):\n",
" \n",
" @partial(jax.pmap, axis_name=\"batch\")\n",
" def _generate(tokenized_prompt, key, params):\n",
" return model.generate(\n",
" **tokenized_prompt,\n",
" do_sample=True,\n",
" num_beams=1,\n",
" prng_key=key,\n",
" params=params\n",
" )\n",
" \n",
" return _generate"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "23b2444c-67a9-44d7-abd1-187ed83a9431",
"metadata": {},
"outputs": [],
"source": [
"run_id = run_ids[0]\n",
"# TODO: turn everything into a class"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bba70f33-af8b-4eb3-9973-7be672301a0b",
"metadata": {},
"outputs": [],
"source": [
"artifact_versions = get_artifact_versions(run_id, latest_only)\n",
"last_inference_version = get_last_inference_version(run_id)\n",
"training_config = get_training_config(run_id)\n",
"run = None\n",
"p_generate = None\n",
"model_files = ['config.json', 'flax_model.msgpack', 'merges.txt', 'special_tokens_map.json', 'tokenizer.json', 'tokenizer_config.json', 'vocab.json']\n",
"for artifact in artifact_versions:\n",
" print(f'Processing artifact: {artifact.name}')\n",
" version = int(artifact.version[1:])\n",
" results = []\n",
" if add_clip_32:\n",
" results32 = []\n",
" columns = ['Caption'] + [f'Image {i+1}' for i in range(top_k)] + [f'Score {i+1}' for i in range(top_k)]\n",
" \n",
" if latest_only:\n",
" assert last_inference_version is None or version > last_inference_version\n",
" else:\n",
" if last_inference_version is None:\n",
" # we should start from v0\n",
" assert version == 0\n",
" elif version <= last_inference_version:\n",
" print(f'v{version} has already been logged (versions logged up to v{last_inference_version}')\n",
" else:\n",
" # check we are logging the correct version\n",
" assert version == last_inference_version + 1\n",
"\n",
" # start/resume corresponding run\n",
" if run is None:\n",
" run = wandb.init(job_type='inference', entity='dalle-mini', project='dalle-mini', config=training_config, id=f'{run_id}-clip16{suffix}', resume='allow')\n",
"\n",
" # work in temporary directory\n",
" with tempfile.TemporaryDirectory() as tmp:\n",
"\n",
" # download model files\n",
" artifact = run.use_artifact(artifact)\n",
" for f in model_files:\n",
" artifact.get_path(f).download(tmp)\n",
"\n",
" # load tokenizer and model\n",
" tokenizer = BartTokenizer.from_pretrained(tmp)\n",
" model = CustomFlaxBartForConditionalGeneration.from_pretrained(tmp)\n",
" model_params = replicate(model.params)\n",
"\n",
" # pmap model function needs to happen only once per model config\n",
" if p_generate is None:\n",
" p_generate = pmap_model_function(model)\n",
"\n",
" # process one batch of captions\n",
" for batch in tqdm(samples):\n",
" processed_prompts = [text_normalizer(x) for x in batch] if normalize_text else list(batch)\n",
"\n",
" # repeat the prompts to distribute over each device and tokenize\n",
" processed_prompts = processed_prompts * jax.device_count()\n",
" tokenized_prompt = tokenizer(processed_prompts, return_tensors='jax', padding='max_length', truncation=True, max_length=128).data\n",
" tokenized_prompt = shard(tokenized_prompt)\n",
"\n",
" # generate images\n",
" images = []\n",
" for i in tqdm(range(num_images // jax.device_count()), desc='Generating Images'):\n",
" key, subkey = jax.random.split(key)\n",
" encoded_images = p_generate(tokenized_prompt, shard_prng_key(subkey), model_params)\n",
" encoded_images = encoded_images.sequences[..., 1:]\n",
" decoded_images = p_decode(encoded_images, vqgan_params)\n",
" decoded_images = decoded_images.clip(0., 1.).reshape((-1, 256, 256, 3))\n",
" for img in decoded_images:\n",
" images.append(Image.fromarray(np.asarray(img * 255, dtype=np.uint8)))\n",
"\n",
" # get clip scores\n",
" print('Calculating CLIP scores')\n",
" clip_inputs = processor(text=batch, images=images, return_tensors='np', padding='max_length', max_length=77, truncation=True).data\n",
" # each shard will have one prompt, images need to be reorganized to be associated to the correct shard\n",
" images_per_prompt_indices = np.asarray(range(0, len(images), batch_size))\n",
" clip_inputs['pixel_values'] = jnp.concatenate(list(clip_inputs['pixel_values'][images_per_prompt_indices + i] for i in range(batch_size)))\n",
" clip_inputs = shard(clip_inputs)\n",
" logits = p_clip(clip_inputs, clip_params)\n",
" logits = logits.reshape(-1, num_images)\n",
" top_scores = logits.argsort()[:, -top_k:][..., ::-1]\n",
" logits = jax.device_get(logits)\n",
" # add to results table\n",
" for i, (idx, scores, sample) in enumerate(zip(top_scores, logits, batch)):\n",
" if sample == padding_item: continue\n",
" cur_images = [images[x] for x in images_per_prompt_indices + i]\n",
" top_images = [wandb.Image(cur_images[x]) for x in idx]\n",
" top_scores = [scores[x] for x in idx]\n",
" results.append([sample] + top_images + top_scores)\n",
" \n",
" # get clip 32 scores - TODO: this should be refactored as it is same code as above\n",
" if add_clip_32:\n",
" print('Calculating CLIP 32 scores')\n",
" clip_inputs = processor32(text=batch, images=images, return_tensors='np', padding='max_length', max_length=77, truncation=True).data\n",
" # each shard will have one prompt, images need to be reorganized to be associated to the correct shard\n",
" images_per_prompt_indices = np.asarray(range(0, len(images), batch_size))\n",
" clip_inputs['pixel_values'] = jnp.concatenate(list(clip_inputs['pixel_values'][images_per_prompt_indices + i] for i in range(batch_size)))\n",
" clip_inputs = shard(clip_inputs)\n",
" logits = p_clip32(clip_inputs, clip32_params)\n",
" logits = logits.reshape(-1, num_images)\n",
" top_scores = logits.argsort()[:, -top_k:][..., ::-1]\n",
" logits = jax.device_get(logits)\n",
" # add to results table\n",
" for i, (idx, scores, sample) in enumerate(zip(top_scores, logits, batch)):\n",
" if sample == padding_item: continue\n",
" cur_images = [images[x] for x in images_per_prompt_indices + i]\n",
" top_images = [wandb.Image(cur_images[x]) for x in idx]\n",
" top_scores = [scores[x] for x in idx]\n",
" results32.append([sample] + top_images + top_scores)\n",
"\n",
" # log results\n",
" table = wandb.Table(columns=columns, data=results)\n",
" run.log({'Samples': table, 'version': version})\n",
" wandb.finish()\n",
" \n",
" if add_clip_32: \n",
" run = wandb.init(job_type='inference', entity='dalle-mini', project='dalle-mini', config=training_config, id=f'{run_id}-clip32{suffix}', resume='allow')\n",
" table = wandb.Table(columns=columns, data=results32)\n",
" run.log({'Samples': table, 'version': version})\n",
" wandb.finish()\n",
" run = None # ensure we don't log on this run"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4e4c7d0c-2848-4f88-b967-82fd571534f1",
"metadata": {},
"outputs": [],
"source": [
"# TODO: not implemented\n",
"def log_runs(runs):\n",
" for run in tqdm(runs):\n",
" log_run(run)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|