Spaces:
Running
Running
File size: 14,119 Bytes
6047b49 3b508e3 6047b49 3b508e3 6047b49 3b508e3 6047b49 3b508e3 6047b49 3b508e3 6047b49 3b508e3 6047b49 3b508e3 6047b49 3b508e3 6047b49 3b508e3 6047b49 3b508e3 6047b49 3b508e3 6047b49 3b508e3 6047b49 3b508e3 6047b49 3b508e3 6047b49 3b508e3 6047b49 3b508e3 6047b49 3b508e3 6047b49 3b508e3 6047b49 3b508e3 6047b49 3b508e3 6047b49 3b508e3 6047b49 3b508e3 6047b49 3b508e3 6047b49 3b508e3 6047b49 3b508e3 6047b49 3b508e3 6047b49 3b508e3 6047b49 3b508e3 6047b49 3b508e3 6047b49 3b508e3 6047b49 3b508e3 6047b49 3b508e3 6047b49 3b508e3 6047b49 3b508e3 6047b49 3b508e3 6047b49 3b508e3 6047b49 3b508e3 6047b49 3b508e3 6047b49 3b508e3 6047b49 3b508e3 6047b49 3b508e3 6047b49 3b508e3 6047b49 3b508e3 6047b49 3b508e3 6047b49 3b508e3 6047b49 3b508e3 6047b49 3b508e3 6047b49 3b508e3 6047b49 3b508e3 6047b49 3b508e3 6047b49 3b508e3 6047b49 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 |
{
"cells": [
{
"cell_type": "markdown",
"id": "d0b72877",
"metadata": {},
"source": [
"# VQGAN JAX Encoding for 🤗 Datasets in streaming mode"
]
},
{
"cell_type": "markdown",
"id": "ba7b31e6",
"metadata": {},
"source": [
"This notebook shows how to pre-encode images to token sequences using JAX, VQGAN and 🤗 Datasets in streaming mode.\n",
"\n",
"This example uses our YFCC100M dataset, but it should be easy to adapt to any other image/caption dataset in the huggingface hub."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3b59489e",
"metadata": {},
"outputs": [],
"source": [
"import io\n",
"\n",
"import requests\n",
"from PIL import Image\n",
"import numpy as np\n",
"from tqdm import tqdm\n",
"\n",
"import torch\n",
"import torchvision.transforms as T\n",
"import torchvision.transforms.functional as TF\n",
"from torchvision.transforms import InterpolationMode\n",
"import os\n",
"\n",
"import jax\n",
"from jax import pmap"
]
},
{
"cell_type": "markdown",
"id": "c7c4c1e6",
"metadata": {},
"source": [
"## Dataset and Parameters"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d45a289e",
"metadata": {},
"outputs": [],
"source": [
"import datasets\n",
"from datasets import Dataset, load_dataset"
]
},
{
"cell_type": "markdown",
"id": "f26e4f18",
"metadata": {},
"source": [
"We'll use the `validation` set for testing. Adjust accordingly."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "28893c3e",
"metadata": {},
"outputs": [],
"source": [
"dataset = load_dataset('dalle-mini/YFCC100M_OpenAI_subset', use_auth_token=True, streaming=True, split='validation')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "33861477",
"metadata": {},
"outputs": [],
"source": [
"from pathlib import Path\n",
"\n",
"yfcc100m = Path.home()/'data'/'YFCC100M_OpenAI_subset'\n",
"yfcc100m_output = yfcc100m/'encoded' # Output directory for encoded files"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6e7b71c4",
"metadata": {},
"outputs": [],
"source": [
"batch_size = 128 # Per device\n",
"num_workers = 16 # Unused in streaming mode"
]
},
{
"cell_type": "markdown",
"id": "0793c26a",
"metadata": {},
"source": [
"### Data preparation"
]
},
{
"cell_type": "markdown",
"id": "86415769",
"metadata": {},
"source": [
"* Images: we transform them so they are center-cropped and square, all of the same size so we can build batches for TPU/GPU processing.\n",
"* Captions: we extract a single `caption` column from the source data, by concatenating the cleaned title and description.\n",
"\n",
"These transformations are done using the Datasets `map` function. In the case of streaming datasets, transformations will run as needed instead of pre-processing the dataset at once."
]
},
{
"cell_type": "markdown",
"id": "0fdf1851",
"metadata": {},
"source": [
"This helper function is used to decode images from the bytes retrieved in `streaming` mode."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5bbca804",
"metadata": {},
"outputs": [],
"source": [
"from PIL import Image\n",
"import io\n",
"\n",
"def get_image(byte_stream):\n",
" image = Image.open(io.BytesIO(byte_stream))\n",
" return image.convert('RGB')"
]
},
{
"cell_type": "markdown",
"id": "b435290b",
"metadata": {},
"source": [
"Image processing"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7e73dfa3",
"metadata": {},
"outputs": [],
"source": [
"def center_crop(image, max_size=256):\n",
" # Note: we allow upscaling too. We should exclude small images. \n",
" image = TF.resize(image, max_size, interpolation=InterpolationMode.LANCZOS)\n",
" image = TF.center_crop(image, output_size=2 * [max_size])\n",
" return image\n",
"\n",
"preprocess_image = T.Compose([\n",
" get_image,\n",
" center_crop,\n",
" T.ToTensor(),\n",
" lambda t: t.permute(1, 2, 0) # Reorder, we need dimensions last\n",
"])"
]
},
{
"cell_type": "markdown",
"id": "1e3ac8de",
"metadata": {},
"source": [
"Caption preparation"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "aadb4d23",
"metadata": {},
"outputs": [],
"source": [
"import string\n",
"\n",
"def create_caption(title, description):\n",
" title = title.strip()\n",
" description = description.strip()\n",
" if len(title) > 0 and title[-1] not in '.!?': title += '.'\n",
" return f'{title} {description}'"
]
},
{
"cell_type": "markdown",
"id": "3c4522b9",
"metadata": {},
"source": [
"And this is the basic transformation function to use in `map`. We don't really need the `key`, but we'll keep it for reference. Since we are returning a new dictionary (as opposed to adding entries to the input), this also removes any metadata columns we don't need."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2566ff68",
"metadata": {},
"outputs": [],
"source": [
"def prepare_item(item):\n",
" return {\n",
" 'key': item['key'],\n",
" 'caption': create_caption(item['title_clean'], item['description_clean']),\n",
" 'image': preprocess_image(item['img'])\n",
" }"
]
},
{
"cell_type": "markdown",
"id": "e519e475",
"metadata": {},
"source": [
"Unlike when using non-streaming datasets, the following operation completes immediately in streaming mode. In streaming mode, `num_proc` is not supported."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "10d7750e",
"metadata": {},
"outputs": [],
"source": [
"prepared_dataset = dataset.map(prepare_item, batched=False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a8595539",
"metadata": {},
"outputs": [],
"source": [
"%%time\n",
"item = next(iter(prepared_dataset))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "04a6eeb4",
"metadata": {},
"outputs": [],
"source": [
"assert(list(item.keys()) == ['key', 'caption', 'image'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "40d3115f",
"metadata": {},
"outputs": [],
"source": [
"item['image'].shape"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "dd844e1c",
"metadata": {},
"outputs": [],
"source": [
"T.ToPILImage()(item['image'].permute(2, 0, 1))"
]
},
{
"cell_type": "markdown",
"id": "44d50a51",
"metadata": {},
"source": [
"### Torch DataLoader"
]
},
{
"cell_type": "markdown",
"id": "17a4bbc6",
"metadata": {},
"source": [
"We'll create a PyTorch DataLoader for convenience. This allows us to easily take batches of our desired size.\n",
"\n",
"We won't be using parallel processing of the DataLoader for now, as the items will be retrieved on the fly. We could attempt to do it using these recommendations: https://pytorch.org/docs/stable/data.html#multi-process-data-loading. For performance considerations, please refer to this thread: https://discuss.huggingface.co/t/allow-streaming-of-large-datasets-with-image-audio/8062/13"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e1c08b7e",
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"from torch.utils.data import DataLoader"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6a296677",
"metadata": {},
"outputs": [],
"source": [
"torch_dataset = prepared_dataset.with_format(\"torch\")"
]
},
{
"cell_type": "markdown",
"id": "29ab13bc",
"metadata": {},
"source": [
"**Note**: according to my tests, `num_workers` is not compatible with Datasets in streaming mode. Processes deadlock and there's no progress."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e2df5e13",
"metadata": {},
"outputs": [],
"source": [
"dataloader = DataLoader(torch_dataset, batch_size=batch_size * jax.device_count())"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c15e3783",
"metadata": {},
"outputs": [],
"source": [
"batch = next(iter(dataloader))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "71d027fe",
"metadata": {},
"outputs": [],
"source": [
"batch['image'].shape"
]
},
{
"cell_type": "markdown",
"id": "a354472b",
"metadata": {},
"source": [
"## VQGAN-JAX model"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2fcf01d7",
"metadata": {},
"outputs": [],
"source": [
"from vqgan_jax.modeling_flax_vqgan import VQModel"
]
},
{
"cell_type": "markdown",
"id": "9daa636d",
"metadata": {},
"source": [
"We'll use a VQGAN trained with Taming Transformers and converted to a JAX model."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "47a8b818",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"model = VQModel.from_pretrained(\"flax-community/vqgan_f16_16384\")"
]
},
{
"cell_type": "markdown",
"id": "62ad01c3",
"metadata": {},
"source": [
"## Encoding"
]
},
{
"cell_type": "markdown",
"id": "20357f74",
"metadata": {},
"source": [
"Encoding is really simple using `shard` to automatically distribute \"superbatches\" across devices, and `pmap`. This is all it takes to create our encoding function, that will be jitted on first use."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6686b004",
"metadata": {},
"outputs": [],
"source": [
"from flax.training.common_utils import shard\n",
"from functools import partial"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "322a4619",
"metadata": {},
"outputs": [],
"source": [
"@partial(jax.pmap, axis_name=\"batch\")\n",
"def encode(batch):\n",
" # Not sure if we should `replicate` params, does not seem to have any effect\n",
" _, indices = model.encode(batch)\n",
" return indices"
]
},
{
"cell_type": "markdown",
"id": "14375a41",
"metadata": {},
"source": [
"### Encoding loop"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ff6c10d4",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import pandas as pd\n",
"\n",
"def encode_captioned_dataset(dataloader, output_dir, save_every=14):\n",
" output_dir.mkdir(parents=True, exist_ok=True)\n",
" \n",
" # Saving strategy:\n",
" # - Create a new file every so often to prevent excessive file seeking.\n",
" # - Save each batch after processing.\n",
" # - Keep the file open until we are done with it.\n",
" file = None \n",
" for n, batch in enumerate(tqdm(iter(dataloader))):\n",
" if (n % save_every == 0):\n",
" if file is not None:\n",
" file.close()\n",
" split_num = n // save_every\n",
" file = open(output_dir/f'split_{split_num:05x}.jsonl', 'w')\n",
"\n",
" images = batch[\"image\"].numpy()\n",
" images = shard(images.squeeze())\n",
" encoded = encode(images)\n",
" encoded = encoded.reshape(-1, encoded.shape[-1])\n",
"\n",
" keys = batch[\"key\"]\n",
" captions = batch[\"caption\"]\n",
"\n",
" encoded_as_string = list(map(lambda item: np.array2string(item, separator=',', max_line_width=50000, formatter={'int':lambda x: str(x)}), encoded))\n",
" batch_df = pd.DataFrame.from_dict({\"key\": keys, \"caption\": captions, \"encoding\": encoded_as_string})\n",
" batch_df.to_json(file, orient='records', lines=True)"
]
},
{
"cell_type": "markdown",
"id": "09ff75a3",
"metadata": {},
"source": [
"Create a new file every 318 iterations. This should produce splits of ~500 MB each, when using a total batch size of 1024."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "96222bb4",
"metadata": {},
"outputs": [],
"source": [
"save_every = 318"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7704863d",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"28it [01:17, 1.60s/it]"
]
}
],
"source": [
"encode_captioned_dataset(dataloader, yfcc100m_output, save_every=save_every)"
]
},
{
"cell_type": "markdown",
"id": "e266a70a",
"metadata": {},
"source": [
"This is ~10-15 slower than local encoding from an SSD. For performance considerations, see the discussion at https://discuss.huggingface.co/t/allow-streaming-of-large-datasets-with-image-audio/8062/13."
]
},
{
"cell_type": "markdown",
"id": "8953dd84",
"metadata": {},
"source": [
"----"
]
}
],
"metadata": {
"interpreter": {
"hash": "db471c52d602b4f5f40ecaf278e88ccfef85c29d0a1a07185b0d51fc7acf4e26"
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|