Spaces:
Runtime error
Runtime error
File size: 2,889 Bytes
44c11f2 c399665 ba57ea8 53ddc87 c399665 b3c9da2 b929de0 919efff cd12ada b3c9da2 919efff b3c9da2 919efff b3c9da2 919efff b3c9da2 919efff b3c9da2 919efff 29e00f0 44c11f2 b3c9da2 44c11f2 8527e35 919efff 8527e35 919efff 8527e35 b929de0 c399665 919efff b3c9da2 8527e35 919efff 8527e35 919efff 8527e35 b929de0 c399665 919efff b3c9da2 44c11f2 919efff b3c9da2 287b7cd 919efff b3c9da2 53ddc87 b3c9da2 53ddc87 b3c9da2 53ddc87 919efff b3c9da2 44c11f2 919efff b3c9da2 53ddc87 b3c9da2 53ddc87 919efff b3c9da2 919efff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
import streamlit as st
from apps.utils import read_markdown
from .streamlit_tensorboard import st_tensorboard, kill_tensorboard
from .utils import Toc
def app(state=None):
kill_tensorboard()
toc = Toc()
st.info("Welcome to our Multilingual-VQA demo. Please use the navigation sidebar to move to our demo, or scroll below to read all about our project. 🤗 In case the sidebar isn't properly rendered, please change to a smaller window size and back to full screen.")
st.header("Table of contents")
toc.placeholder()
toc.header("Introduction and Motivation")
st.write(read_markdown("intro/intro.md"))
toc.subheader("Novel Contributions")
st.write(read_markdown("intro/contributions.md"))
toc.header("Methodology")
toc.subheader("Pre-training")
st.write(read_markdown("pretraining/intro.md"))
# col1, col2 = st.beta_columns([5,5])
st.image(
"./misc/article/Multilingual-VQA.png",
caption="Masked LM model for Image-text Pre-training.",
)
toc.subsubheader("MLM Dataset")
st.write(read_markdown("pretraining/data.md"))
toc.subsubheader("MLM Model")
st.write(read_markdown("pretraining/model.md"))
toc.subsubheader("MLM Training Logs")
st.info("In case the TensorBoard logs are not displayed, please visit this link: https://huggingface.co/flax-community/multilingual-vqa-pt-ckpts/tensorboard")
st_tensorboard(logdir='./logs/pretrain_logs', port=6006)
toc.subheader("Finetuning")
toc.subsubheader("VQA Dataset")
st.write(read_markdown("finetuning/data.md"))
toc.subsubheader("VQA Model")
st.write(read_markdown("finetuning/model.md"))
toc.subsubheader("VQA Training Logs")
st.info("In case the TensorBoard logs are not displayed, please visit this link: https://huggingface.co/flax-community/multilingual-vqa-pt-60k-ft/tensorboard")
st_tensorboard(logdir='./logs/finetune_logs', port=6007)
toc.header("Challenges and Technical Difficulties")
st.write(read_markdown("challenges.md"))
toc.header("Limitations")
st.write(read_markdown("limitations.md"))
toc.header("Conclusion, Future Work, and Social Impact")
toc.subheader("Conclusion")
st.write(read_markdown("conclusion_future_work/conclusion.md"))
toc.subheader("Future Work")
st.write(read_markdown("conclusion_future_work/future_work.md"))
toc.subheader("Social Impact")
st.write(read_markdown("conclusion_future_work/social_impact.md"))
toc.header("References")
st.write(read_markdown("references.md"))
toc.header("Checkpoints")
st.write(read_markdown("checkpoints/checkpoints.md"))
toc.subheader("Other Checkpoints")
st.write(read_markdown("checkpoints/other_checkpoints.md"))
toc.header("Acknowledgements")
st.write(read_markdown("acknowledgements.md"))
toc.generate() |