File size: 2,826 Bytes
44c11f2
 
6259d16
ba57ea8
53ddc87
b3c9da2
b929de0
919efff
cd12ada
b3c9da2
919efff
b3c9da2
919efff
b3c9da2
919efff
 
b3c9da2
919efff
b3c9da2
919efff
 
29e00f0
44c11f2
b3c9da2
44c11f2
8527e35
919efff
8527e35
919efff
8527e35
b929de0
86b65e9
919efff
 
b3c9da2
8527e35
919efff
8527e35
919efff
8527e35
b929de0
86b65e9
919efff
b3c9da2
44c11f2
919efff
b3c9da2
287b7cd
919efff
b3c9da2
 
53ddc87
b3c9da2
53ddc87
b3c9da2
53ddc87
919efff
b3c9da2
44c11f2
919efff
b3c9da2
53ddc87
b3c9da2
53ddc87
919efff
b3c9da2
919efff
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import streamlit as st
from apps.utils import read_markdown
from .streamlit_tensorboard import st_tensorboard
from .utils import Toc
def app(state=None):
    toc = Toc()
    st.info("Welcome to our Multilingual-VQA demo. Please use the navigation sidebar to move to our demo, or scroll below to read all about our project. 🤗 In case the sidebar isn't properly rendered, please change to a smaller window size and back to full screen.")
    
    st.header("Table of contents")
    toc.placeholder()
    
    toc.header("Introduction and Motivation")
    st.write(read_markdown("intro/intro.md"))
    toc.subheader("Novel Contributions")
    st.write(read_markdown("intro/contributions.md"))
    
    toc.header("Methodology")

    toc.subheader("Pre-training")
    st.write(read_markdown("pretraining/intro.md"))
    # col1, col2 = st.beta_columns([5,5])
    st.image(
        "./misc/article/Multilingual-VQA.png",
        caption="Masked LM model for Image-text Pre-training.",
    )
    toc.subsubheader("MLM Dataset")
    st.write(read_markdown("pretraining/data.md"))
    toc.subsubheader("MLM Model")
    st.write(read_markdown("pretraining/model.md"))
    toc.subsubheader("MLM Training Logs")
    st.info("In case the TensorBoard logs are not displayed, please visit this link: https://huggingface.co/flax-community/multilingual-vqa-pt-ckpts/tensorboard")
    st_tensorboard(logdir='./logs/pretrain_logs')
    
    
    toc.subheader("Finetuning")
    toc.subsubheader("VQA Dataset")
    st.write(read_markdown("finetuning/data.md"))
    toc.subsubheader("VQA Model")
    st.write(read_markdown("finetuning/model.md"))
    toc.subsubheader("VQA Training Logs")
    st.info("In case the TensorBoard logs are not displayed, please visit this link: https://huggingface.co/flax-community/multilingual-vqa-pt-60k-ft/tensorboard")
    st_tensorboard(logdir='./logs/finetune_logs')
    
    toc.header("Challenges and Technical Difficulties")
    st.write(read_markdown("challenges.md"))
    
    toc.header("Limitations")
    st.write(read_markdown("limitations.md"))
    
    toc.header("Conclusion, Future Work, and Social Impact")
    toc.subheader("Conclusion")
    st.write(read_markdown("conclusion_future_work/conclusion.md"))
    toc.subheader("Future Work")
    st.write(read_markdown("conclusion_future_work/future_work.md"))
    toc.subheader("Social Impact")
    st.write(read_markdown("conclusion_future_work/social_impact.md"))
    
    toc.header("References")
    st.write(read_markdown("references.md"))

    toc.header("Checkpoints")
    st.write(read_markdown("checkpoints/checkpoints.md"))
    toc.subheader("Other Checkpoints")
    st.write(read_markdown("checkpoints/other_checkpoints.md"))
    
    toc.header("Acknowledgements")
    st.write(read_markdown("acknowledgements.md"))
    toc.generate()