File size: 21,386 Bytes
4409449 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 |
import numpy as np
import scipy.linalg
import torch
from torch import linalg
import sys
def l2_norm(x1, x2, dim):
return torch.linalg.vector_norm(x1 - x2, ord=2, dim=dim)
def variance(x, T, dim):
mean = x.mean(dim)
out = (x - mean)**2
out = out.sum(dim)
return out / (T - 1)
def sqrtm(input):
m = input.detach().cpu().numpy().astype(np.float64_)
sqrtm = torch.from_numpy(scipy.linalg.sqrtm(m)).to(input)
return sqrtm
# (X - X_train)*(X - X_train) = -2X*X_train + X*X + X_train*X_train
def euclidean_distance_matrix(matrix1, matrix2):
"""
Params:
-- matrix1: N1 x D
-- matrix2: N2 x D
Returns:
-- dist: N1 x N2
dist[i, j] == distance(matrix1[i], matrix2[j])
"""
assert matrix1.shape[1] == matrix2.shape[1]
d1 = -2 * torch.mm(matrix1, matrix2.T) # shape (num_test, num_train)
d2 = torch.sum(torch.square(matrix1), axis=1,
keepdims=True) # shape (num_test, 1)
d3 = torch.sum(torch.square(matrix2), axis=1) # shape (num_train, )
dists = torch.sqrt(d1 + d2 + d3) # broadcasting
return dists
def euclidean_distance_matrix_np(matrix1, matrix2):
"""
Params:
-- matrix1: N1 x D
-- matrix2: N2 x D
Returns:
-- dist: N1 x N2
dist[i, j] == distance(matrix1[i], matrix2[j])
"""
assert matrix1.shape[1] == matrix2.shape[1]
d1 = -2 * np.dot(matrix1, matrix2.T) # shape (num_test, num_train)
d2 = np.sum(np.square(matrix1), axis=1,
keepdims=True) # shape (num_test, 1)
d3 = np.sum(np.square(matrix2), axis=1) # shape (num_train, )
dists = np.sqrt(d1 + d2 + d3) # broadcasting
return dists
def calculate_top_k(mat, top_k):
size = mat.shape[0]
gt_mat = (torch.unsqueeze(torch.arange(size),
1).to(mat.device).repeat_interleave(size, 1))
bool_mat = mat == gt_mat
correct_vec = False
top_k_list = []
for i in range(top_k):
# print(correct_vec, bool_mat[:, i])
correct_vec = correct_vec | bool_mat[:, i]
# print(correct_vec)
top_k_list.append(correct_vec[:, None])
top_k_mat = torch.cat(top_k_list, dim=1)
return top_k_mat
def calculate_activation_statistics(activations):
"""
Params:
-- activation: num_samples x dim_feat
Returns:
-- mu: dim_feat
-- sigma: dim_feat x dim_feat
"""
activations = activations.cpu().numpy()
mu = np.mean(activations, axis=0)
sigma = np.cov(activations, rowvar=False)
return mu, sigma
def calculate_activation_statistics_np(activations):
"""
Params:
-- activation: num_samples x dim_feat
Returns:
-- mu: dim_feat
-- sigma: dim_feat x dim_feat
"""
mu = np.mean(activations, axis=0)
cov = np.cov(activations, rowvar=False)
return mu, cov
# def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
# """Numpy implementation of the Frechet Distance.
# The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)
# and X_2 ~ N(mu_2, C_2) is
# d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).
# Stable version by Dougal J. Sutherland.
# Params:
# -- mu1 : Numpy array containing the activations of a layer of the
# inception net (like returned by the function 'get_predictions')
# for generated samples.
# -- mu2 : The sample mean over activations, precalculated on an
# representative data set.
# -- sigma1: The covariance matrix over activations for generated samples.
# -- sigma2: The covariance matrix over activations, precalculated on an
# representative data set.
# Returns:
# -- : The Frechet Distance.
# """
# mu1 = torch.atleast_1d(mu1)
# mu2 = torch.atleast_1d(mu2)
# sigma1 = torch.atleast_2d(sigma1)
# sigma2 = torch.atleast_2d(sigma2)
# assert mu1.shape == mu2.shape, \
# 'Training and test mean vectors have different lengths'
# assert sigma1.shape == sigma2.shape, \
# 'Training and test covariances have different dimensions'
# diff = mu1 - mu2
# # Product might be almost singular
# # covmean, _ = sqrtm(sigma1.dot(sigma2), disp=False)
# covmean = sqrtm(torch.mm(sigma1,sigma2))
# if not torch.isfinite(covmean).all():
# msg = ('fid calculation produces singular product; '
# 'adding %s to diagonal of cov estimates') % eps
# print(msg)
# offset = torch.eye(sigma1.shape[0]) * eps
# # covmean = sqrtm((sigma1 + offset).dot(sigma2 + offset))
# covmean = sqrtm(torch.mm(sigma1+ offset,sigma2+ offset))
# # Numerical error might give slight imaginary component
# if torch.is_complex(covmean):
# if not torch.allclose(torch.diagonal(covmean).imag, 0, atol=1e-3):
# m = torch.max(torch.abs(covmean.imag))
# raise ValueError('Imaginary component {}'.format(m))
# covmean = covmean.real
# tr_covmean = torch.trace(covmean)
# return (diff.dot(diff) + torch.trace(sigma1) +
# torch.trace(sigma2) - 2 * tr_covmean)
def calculate_frechet_distance_np(mu1, sigma1, mu2, sigma2, eps=1e-6):
"""Numpy implementation of the Frechet Distance.
The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)
and X_2 ~ N(mu_2, C_2) is
d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).
Stable version by Dougal J. Sutherland.
Params:
-- mu1 : Numpy array containing the activations of a layer of the
inception net (like returned by the function 'get_predictions')
for generated samples.
-- mu2 : The sample mean over activations, precalculated on an
representative data set.
-- sigma1: The covariance matrix over activations for generated samples.
-- sigma2: The covariance matrix over activations, precalculated on an
representative data set.
Returns:
-- : The Frechet Distance.
"""
mu1 = np.atleast_1d(mu1)
mu2 = np.atleast_1d(mu2)
sigma1 = np.atleast_2d(sigma1)
sigma2 = np.atleast_2d(sigma2)
assert (mu1.shape == mu2.shape
), "Training and test mean vectors have different lengths"
assert (sigma1.shape == sigma2.shape
), "Training and test covariances have different dimensions"
diff = mu1 - mu2
# Product might be almost singular
covmean, _ = scipy.linalg.sqrtm(sigma1.dot(sigma2), disp=False)
if not np.isfinite(covmean).all():
msg = ("fid calculation produces singular product; "
"adding %s to diagonal of cov estimates") % eps
print(msg)
offset = np.eye(sigma1.shape[0]) * eps
covmean = scipy.linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
# Numerical error might give slight imaginary component
if np.iscomplexobj(covmean):
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
m = np.max(np.abs(covmean.imag))
raise ValueError("Imaginary component {}".format(m))
# print("Imaginary component {}".format(m))
covmean = covmean.real
tr_covmean = np.trace(covmean)
return diff.dot(diff) + np.trace(sigma1) + np.trace(
sigma2) - 2 * tr_covmean
def calculate_diversity(activation, diversity_times):
assert len(activation.shape) == 2
assert activation.shape[0] > diversity_times
num_samples = activation.shape[0]
first_indices = np.random.choice(num_samples,
diversity_times,
replace=False)
second_indices = np.random.choice(num_samples,
diversity_times,
replace=False)
dist = linalg.norm(activation[first_indices] - activation[second_indices],
axis=1)
return dist.mean()
def calculate_diversity_np(activation, diversity_times):
assert len(activation.shape) == 2
assert activation.shape[0] > diversity_times
num_samples = activation.shape[0]
first_indices = np.random.choice(num_samples,
diversity_times,
replace=False)
second_indices = np.random.choice(num_samples,
diversity_times,
replace=False)
dist = scipy.linalg.norm(activation[first_indices] -
activation[second_indices],
axis=1)
return dist.mean()
def calculate_multimodality_np(activation, multimodality_times):
assert len(activation.shape) == 3
assert activation.shape[1] > multimodality_times
num_per_sent = activation.shape[1]
first_dices = np.random.choice(num_per_sent,
multimodality_times,
replace=False)
second_dices = np.random.choice(num_per_sent,
multimodality_times,
replace=False)
dist = scipy.linalg.norm(activation[:, first_dices] -
activation[:, second_dices],
axis=2)
return dist.mean()
# motion reconstructions metrics
def batch_compute_similarity_transform_torch(S1, S2):
"""
Computes a similarity transform (sR, t) that takes
a set of 3D points S1 (3 x N) closest to a set of 3D points S2,
where R is an 3x3 rotation matrix, t 3x1 translation, s scale.
i.e. solves the orthogonal Procrutes problem.
"""
transposed = False
if S1.shape[0] != 3 and S1.shape[0] != 2:
S1 = S1.permute(0, 2, 1)
S2 = S2.permute(0, 2, 1)
transposed = True
assert S2.shape[1] == S1.shape[1]
# 1. Remove mean.
mu1 = S1.mean(axis=-1, keepdims=True)
mu2 = S2.mean(axis=-1, keepdims=True)
X1 = S1 - mu1
X2 = S2 - mu2
# 2. Compute variance of X1 used for scale.
var1 = torch.sum(X1**2, dim=1).sum(dim=1)
# 3. The outer product of X1 and X2.
K = X1.bmm(X2.permute(0, 2, 1))
# 4. Solution that Maximizes trace(R'K) is R=U*V', where U, V are
# singular vectors of K.
U, s, V = torch.svd(K)
# Construct Z that fixes the orientation of R to get det(R)=1.
Z = torch.eye(U.shape[1], device=S1.device).unsqueeze(0)
Z = Z.repeat(U.shape[0], 1, 1)
Z[:, -1, -1] *= torch.sign(torch.det(U.bmm(V.permute(0, 2, 1))))
# Construct R.
R = V.bmm(Z.bmm(U.permute(0, 2, 1)))
# 5. Recover scale.
scale = torch.cat([torch.trace(x).unsqueeze(0) for x in R.bmm(K)]) / var1
# 6. Recover translation.
t = mu2 - (scale.unsqueeze(-1).unsqueeze(-1) * (R.bmm(mu1)))
# 7. Error:
S1_hat = scale.unsqueeze(-1).unsqueeze(-1) * R.bmm(S1) + t
if transposed:
S1_hat = S1_hat.permute(0, 2, 1)
return S1_hat, (scale, R, t)
def compute_mpjpe(preds,
target,
valid_mask=None,
pck_joints=None,
sample_wise=True):
"""
Mean per-joint position error (i.e. mean Euclidean distance)
often referred to as "Protocol #1" in many papers.
"""
assert preds.shape == target.shape, print(preds.shape,
target.shape) # BxJx3
mpjpe = torch.norm(preds - target, p=2, dim=-1) # BxJ
if pck_joints is None:
if sample_wise:
mpjpe_seq = ((mpjpe * valid_mask.float()).sum(-1) /
valid_mask.float().sum(-1)
if valid_mask is not None else mpjpe.mean(-1))
else:
mpjpe_seq = mpjpe[valid_mask] if valid_mask is not None else mpjpe
return mpjpe_seq
else:
mpjpe_pck_seq = mpjpe[:, pck_joints]
return mpjpe_pck_seq
def align_by_parts(joints, align_inds=None):
if align_inds is None:
return joints
pelvis = joints[:, align_inds].mean(1)
return joints - torch.unsqueeze(pelvis, dim=1)
def calc_mpjpe(preds, target, align_inds=[0], sample_wise=True, trans=None):
# Expects BxJx3
valid_mask = target[:, :, 0] != -2.0
# valid_mask = torch.BoolTensor(target[:, :, 0].shape)
if align_inds is not None:
preds_aligned = align_by_parts(preds, align_inds=align_inds)
if trans is not None:
preds_aligned += trans
target_aligned = align_by_parts(target, align_inds=align_inds)
else:
preds_aligned, target_aligned = preds, target
mpjpe_each = compute_mpjpe(preds_aligned,
target_aligned,
valid_mask=valid_mask,
sample_wise=sample_wise)
return mpjpe_each
def calc_accel(preds, target):
"""
Mean joint acceleration error
often referred to as "Protocol #1" in many papers.
"""
assert preds.shape == target.shape, print(preds.shape,
target.shape) # BxJx3
assert preds.dim() == 3
# Expects BxJx3
# valid_mask = torch.BoolTensor(target[:, :, 0].shape)
accel_gt = target[:-2] - 2 * target[1:-1] + target[2:]
accel_pred = preds[:-2] - 2 * preds[1:-1] + preds[2:]
normed = torch.linalg.norm(accel_pred - accel_gt, dim=-1)
accel_seq = normed.mean(1)
return accel_seq
def calc_pampjpe(preds, target, sample_wise=True, return_transform_mat=False):
# Expects BxJx3
target, preds = target.float(), preds.float()
# extracting the keypoints that all samples have valid annotations
# valid_mask = (target[:, :, 0] != -2.).sum(0) == len(target)
# preds_tranformed, PA_transform = batch_compute_similarity_transform_torch(preds[:, valid_mask], target[:, valid_mask])
# pa_mpjpe_each = compute_mpjpe(preds_tranformed, target[:, valid_mask], sample_wise=sample_wise)
preds_tranformed, PA_transform = batch_compute_similarity_transform_torch(
preds, target)
pa_mpjpe_each = compute_mpjpe(preds_tranformed,
target,
sample_wise=sample_wise)
if return_transform_mat:
return pa_mpjpe_each, PA_transform
else:
return pa_mpjpe_each
# from action2motion
def calculate_diversity_multimodality(activations,
labels,
num_labels,
diversity_times=200,
multimodality_times=20):
labels = labels.long()
num_motions = activations.shape[0] # len(labels)
diversity = 0
first_indices = np.random.randint(0, num_motions, diversity_times)
second_indices = np.random.randint(0, num_motions, diversity_times)
for first_idx, second_idx in zip(first_indices, second_indices):
diversity += torch.dist(activations[first_idx, :],
activations[second_idx, :])
diversity /= diversity_times
multimodality = 0
label_quotas = np.zeros(num_labels)
label_quotas[labels.unique(
)] = multimodality_times # if a label does not appear in batch, its quota remains zero
while np.any(label_quotas > 0):
# print(label_quotas)
first_idx = np.random.randint(0, num_motions)
first_label = labels[first_idx]
if not label_quotas[first_label]:
continue
second_idx = np.random.randint(0, num_motions)
second_label = labels[second_idx]
while first_label != second_label:
second_idx = np.random.randint(0, num_motions)
second_label = labels[second_idx]
label_quotas[first_label] -= 1
first_activation = activations[first_idx, :]
second_activation = activations[second_idx, :]
multimodality += torch.dist(first_activation, second_activation)
multimodality /= (multimodality_times * num_labels)
return diversity, multimodality
def calculate_fid(statistics_1, statistics_2):
return calculate_frechet_distance_np(statistics_1[0], statistics_1[1],
statistics_2[0], statistics_2[1])
# from: https://github.com/abdulfatir/gan-metrics-pytorch/blob/master/kid_score.py
def polynomial_mmd_averages(codes_g,
codes_r,
n_subsets=50,
subset_size=1000,
ret_var=True,
output=sys.stdout,
**kernel_args):
m = min(codes_g.shape[0], codes_r.shape[0])
mmds = np.zeros(n_subsets)
if ret_var:
vars = np.zeros(n_subsets)
choice = np.random.choice
replace = subset_size < len(codes_g)
for i in range(n_subsets):
g = codes_g[choice(len(codes_g), subset_size, replace=replace)]
r = codes_r[choice(len(codes_r), subset_size, replace=replace)]
o = polynomial_mmd(g, r, **kernel_args, var_at_m=m, ret_var=ret_var)
if ret_var:
mmds[i], vars[i] = o
else:
mmds[i] = o
return (mmds, vars) if ret_var else mmds
def polynomial_mmd(codes_g,
codes_r,
degree=3,
gamma=None,
coef0=1,
var_at_m=None,
ret_var=True):
from sklearn.metrics.pairwise import polynomial_kernel
# use k(x, y) = (gamma <x, y> + coef0)^degree
# default gamma is 1 / dim
X = codes_g
Y = codes_r
K_XX = polynomial_kernel(X, degree=degree, gamma=gamma, coef0=coef0)
K_YY = polynomial_kernel(Y, degree=degree, gamma=gamma, coef0=coef0)
K_XY = polynomial_kernel(X, Y, degree=degree, gamma=gamma, coef0=coef0)
return _mmd2_and_variance(K_XX,
K_XY,
K_YY,
var_at_m=var_at_m,
ret_var=ret_var)
def _mmd2_and_variance(K_XX,
K_XY,
K_YY,
unit_diagonal=False,
mmd_est='unbiased',
block_size=1024,
var_at_m=None,
ret_var=True):
# based on
# https://github.com/dougalsutherland/opt-mmd/blob/master/two_sample/mmd.py
# but changed to not compute the full kernel matrix at once
m = K_XX.shape[0]
assert K_XX.shape == (m, m)
assert K_XY.shape == (m, m)
assert K_YY.shape == (m, m)
if var_at_m is None:
var_at_m = m
# Get the various sums of kernels that we'll use
# Kts drop the diagonal, but we don't need to compute them explicitly
if unit_diagonal:
diag_X = diag_Y = 1
sum_diag_X = sum_diag_Y = m
sum_diag2_X = sum_diag2_Y = m
else:
diag_X = np.diagonal(K_XX)
diag_Y = np.diagonal(K_YY)
sum_diag_X = diag_X.sum()
sum_diag_Y = diag_Y.sum()
sum_diag2_X = _sqn(diag_X)
sum_diag2_Y = _sqn(diag_Y)
Kt_XX_sums = K_XX.sum(axis=1) - diag_X
Kt_YY_sums = K_YY.sum(axis=1) - diag_Y
K_XY_sums_0 = K_XY.sum(axis=0)
K_XY_sums_1 = K_XY.sum(axis=1)
Kt_XX_sum = Kt_XX_sums.sum()
Kt_YY_sum = Kt_YY_sums.sum()
K_XY_sum = K_XY_sums_0.sum()
if mmd_est == 'biased':
mmd2 = ((Kt_XX_sum + sum_diag_X) / (m * m) + (Kt_YY_sum + sum_diag_Y) /
(m * m) - 2 * K_XY_sum / (m * m))
else:
assert mmd_est in {'unbiased', 'u-statistic'}
mmd2 = (Kt_XX_sum + Kt_YY_sum) / (m * (m - 1))
if mmd_est == 'unbiased':
mmd2 -= 2 * K_XY_sum / (m * m)
else:
mmd2 -= 2 * (K_XY_sum - np.trace(K_XY)) / (m * (m - 1))
if not ret_var:
return mmd2
Kt_XX_2_sum = _sqn(K_XX) - sum_diag2_X
Kt_YY_2_sum = _sqn(K_YY) - sum_diag2_Y
K_XY_2_sum = _sqn(K_XY)
dot_XX_XY = Kt_XX_sums.dot(K_XY_sums_1)
dot_YY_YX = Kt_YY_sums.dot(K_XY_sums_0)
m1 = m - 1
m2 = m - 2
zeta1_est = (
1 / (m * m1 * m2) *
(_sqn(Kt_XX_sums) - Kt_XX_2_sum + _sqn(Kt_YY_sums) - Kt_YY_2_sum) - 1 /
(m * m1)**2 * (Kt_XX_sum**2 + Kt_YY_sum**2) + 1 / (m * m * m1) *
(_sqn(K_XY_sums_1) + _sqn(K_XY_sums_0) - 2 * K_XY_2_sum) -
2 / m**4 * K_XY_sum**2 - 2 / (m * m * m1) * (dot_XX_XY + dot_YY_YX) +
2 / (m**3 * m1) * (Kt_XX_sum + Kt_YY_sum) * K_XY_sum)
zeta2_est = (1 / (m * m1) * (Kt_XX_2_sum + Kt_YY_2_sum) - 1 / (m * m1)**2 *
(Kt_XX_sum**2 + Kt_YY_sum**2) + 2 / (m * m) * K_XY_2_sum -
2 / m**4 * K_XY_sum**2 - 4 / (m * m * m1) *
(dot_XX_XY + dot_YY_YX) + 4 / (m**3 * m1) *
(Kt_XX_sum + Kt_YY_sum) * K_XY_sum)
var_est = (4 * (var_at_m - 2) / (var_at_m * (var_at_m - 1)) * zeta1_est +
2 / (var_at_m * (var_at_m - 1)) * zeta2_est)
return mmd2, var_est
def _sqn(arr):
flat = np.ravel(arr)
return flat.dot(flat)
def calculate_kid(real_activations, generated_activations):
kid_values = polynomial_mmd_averages(real_activations,
generated_activations,
n_subsets=100)
results = (kid_values[0].mean(), kid_values[0].std())
return results
|