File size: 21,386 Bytes
4409449
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
import numpy as np
import scipy.linalg
import torch
from torch import linalg
import sys


def l2_norm(x1, x2, dim):
    return torch.linalg.vector_norm(x1 - x2, ord=2, dim=dim)


def variance(x, T, dim):
    mean = x.mean(dim)
    out = (x - mean)**2
    out = out.sum(dim)
    return out / (T - 1)


def sqrtm(input):
    m = input.detach().cpu().numpy().astype(np.float64_)
    sqrtm = torch.from_numpy(scipy.linalg.sqrtm(m)).to(input)
    return sqrtm


# (X - X_train)*(X - X_train) = -2X*X_train + X*X + X_train*X_train
def euclidean_distance_matrix(matrix1, matrix2):
    """
    Params:
    -- matrix1: N1 x D
    -- matrix2: N2 x D
    Returns:
    -- dist: N1 x N2
    dist[i, j] == distance(matrix1[i], matrix2[j])
    """
    assert matrix1.shape[1] == matrix2.shape[1]
    d1 = -2 * torch.mm(matrix1, matrix2.T)  # shape (num_test, num_train)
    d2 = torch.sum(torch.square(matrix1), axis=1,
                   keepdims=True)  # shape (num_test, 1)
    d3 = torch.sum(torch.square(matrix2), axis=1)  # shape (num_train, )
    dists = torch.sqrt(d1 + d2 + d3)  # broadcasting
    return dists


def euclidean_distance_matrix_np(matrix1, matrix2):
    """
    Params:
    -- matrix1: N1 x D
    -- matrix2: N2 x D
    Returns:
    -- dist: N1 x N2
    dist[i, j] == distance(matrix1[i], matrix2[j])
    """
    assert matrix1.shape[1] == matrix2.shape[1]
    d1 = -2 * np.dot(matrix1, matrix2.T)  # shape (num_test, num_train)
    d2 = np.sum(np.square(matrix1), axis=1,
                keepdims=True)  # shape (num_test, 1)
    d3 = np.sum(np.square(matrix2), axis=1)  # shape (num_train, )
    dists = np.sqrt(d1 + d2 + d3)  # broadcasting
    return dists


def calculate_top_k(mat, top_k):
    size = mat.shape[0]
    gt_mat = (torch.unsqueeze(torch.arange(size),
                              1).to(mat.device).repeat_interleave(size, 1))
    bool_mat = mat == gt_mat
    correct_vec = False
    top_k_list = []
    for i in range(top_k):
        #         print(correct_vec, bool_mat[:, i])
        correct_vec = correct_vec | bool_mat[:, i]
        # print(correct_vec)
        top_k_list.append(correct_vec[:, None])
    top_k_mat = torch.cat(top_k_list, dim=1)
    return top_k_mat


def calculate_activation_statistics(activations):
    """
    Params:
    -- activation: num_samples x dim_feat
    Returns:
    -- mu: dim_feat
    -- sigma: dim_feat x dim_feat
    """
    activations = activations.cpu().numpy()
    mu = np.mean(activations, axis=0)
    sigma = np.cov(activations, rowvar=False)
    return mu, sigma


def calculate_activation_statistics_np(activations):
    """
    Params:
    -- activation: num_samples x dim_feat
    Returns:
    -- mu: dim_feat
    -- sigma: dim_feat x dim_feat
    """
    mu = np.mean(activations, axis=0)
    cov = np.cov(activations, rowvar=False)
    return mu, cov


# def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
#     """Numpy implementation of the Frechet Distance.
#     The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)
#     and X_2 ~ N(mu_2, C_2) is
#             d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).
#     Stable version by Dougal J. Sutherland.
#     Params:
#     -- mu1   : Numpy array containing the activations of a layer of the
#                inception net (like returned by the function 'get_predictions')
#                for generated samples.
#     -- mu2   : The sample mean over activations, precalculated on an
#                representative data set.
#     -- sigma1: The covariance matrix over activations for generated samples.
#     -- sigma2: The covariance matrix over activations, precalculated on an
#                representative data set.
#     Returns:
#     --   : The Frechet Distance.
#     """

#     mu1 = torch.atleast_1d(mu1)
#     mu2 = torch.atleast_1d(mu2)

#     sigma1 = torch.atleast_2d(sigma1)
#     sigma2 = torch.atleast_2d(sigma2)

#     assert mu1.shape == mu2.shape, \
#         'Training and test mean vectors have different lengths'
#     assert sigma1.shape == sigma2.shape, \
#         'Training and test covariances have different dimensions'

#     diff = mu1 - mu2

#     # Product might be almost singular
#     # covmean, _ = sqrtm(sigma1.dot(sigma2), disp=False)
#     covmean = sqrtm(torch.mm(sigma1,sigma2))
#     if not torch.isfinite(covmean).all():
#         msg = ('fid calculation produces singular product; '
#                'adding %s to diagonal of cov estimates') % eps
#         print(msg)
#         offset = torch.eye(sigma1.shape[0]) * eps
#         # covmean = sqrtm((sigma1 + offset).dot(sigma2 + offset))
#         covmean = sqrtm(torch.mm(sigma1+ offset,sigma2+ offset))

#     # Numerical error might give slight imaginary component
#     if torch.is_complex(covmean):
#         if not torch.allclose(torch.diagonal(covmean).imag, 0, atol=1e-3):
#             m = torch.max(torch.abs(covmean.imag))
#             raise ValueError('Imaginary component {}'.format(m))
#         covmean = covmean.real

#     tr_covmean = torch.trace(covmean)

#     return (diff.dot(diff) + torch.trace(sigma1) +
#             torch.trace(sigma2) - 2 * tr_covmean)


def calculate_frechet_distance_np(mu1, sigma1, mu2, sigma2, eps=1e-6):
    """Numpy implementation of the Frechet Distance.
    The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)
    and X_2 ~ N(mu_2, C_2) is
            d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).
    Stable version by Dougal J. Sutherland.
    Params:
    -- mu1   : Numpy array containing the activations of a layer of the
               inception net (like returned by the function 'get_predictions')
               for generated samples.
    -- mu2   : The sample mean over activations, precalculated on an
               representative data set.
    -- sigma1: The covariance matrix over activations for generated samples.
    -- sigma2: The covariance matrix over activations, precalculated on an
               representative data set.
    Returns:
    --   : The Frechet Distance.
    """

    mu1 = np.atleast_1d(mu1)
    mu2 = np.atleast_1d(mu2)

    sigma1 = np.atleast_2d(sigma1)
    sigma2 = np.atleast_2d(sigma2)

    assert (mu1.shape == mu2.shape
            ), "Training and test mean vectors have different lengths"
    assert (sigma1.shape == sigma2.shape
            ), "Training and test covariances have different dimensions"

    diff = mu1 - mu2
    # Product might be almost singular
    covmean, _ = scipy.linalg.sqrtm(sigma1.dot(sigma2), disp=False)
    if not np.isfinite(covmean).all():
        msg = ("fid calculation produces singular product; "
               "adding %s to diagonal of cov estimates") % eps
        print(msg)
        offset = np.eye(sigma1.shape[0]) * eps
        covmean = scipy.linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))

    # Numerical error might give slight imaginary component
    if np.iscomplexobj(covmean):
        if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
            m = np.max(np.abs(covmean.imag))
            raise ValueError("Imaginary component {}".format(m))
            # print("Imaginary component {}".format(m))
        covmean = covmean.real
    tr_covmean = np.trace(covmean)

    return diff.dot(diff) + np.trace(sigma1) + np.trace(
        sigma2) - 2 * tr_covmean


def calculate_diversity(activation, diversity_times):
    assert len(activation.shape) == 2
    assert activation.shape[0] > diversity_times
    num_samples = activation.shape[0]

    first_indices = np.random.choice(num_samples,
                                     diversity_times,
                                     replace=False)
    second_indices = np.random.choice(num_samples,
                                      diversity_times,
                                      replace=False)
    dist = linalg.norm(activation[first_indices] - activation[second_indices],
                       axis=1)
    return dist.mean()


def calculate_diversity_np(activation, diversity_times):
    assert len(activation.shape) == 2
    assert activation.shape[0] > diversity_times
    num_samples = activation.shape[0]

    first_indices = np.random.choice(num_samples,
                                     diversity_times,
                                     replace=False)
    second_indices = np.random.choice(num_samples,
                                      diversity_times,
                                      replace=False)
    dist = scipy.linalg.norm(activation[first_indices] -
                             activation[second_indices],
                             axis=1)
    return dist.mean()


def calculate_multimodality_np(activation, multimodality_times):
    assert len(activation.shape) == 3
    assert activation.shape[1] > multimodality_times
    num_per_sent = activation.shape[1]

    first_dices = np.random.choice(num_per_sent,
                                   multimodality_times,
                                   replace=False)
    second_dices = np.random.choice(num_per_sent,
                                    multimodality_times,
                                    replace=False)
    dist = scipy.linalg.norm(activation[:, first_dices] -
                             activation[:, second_dices],
                             axis=2)
    return dist.mean()


# motion reconstructions metrics


def batch_compute_similarity_transform_torch(S1, S2):
    """
    Computes a similarity transform (sR, t) that takes
    a set of 3D points S1 (3 x N) closest to a set of 3D points S2,
    where R is an 3x3 rotation matrix, t 3x1 translation, s scale.
    i.e. solves the orthogonal Procrutes problem.
    """
    transposed = False
    if S1.shape[0] != 3 and S1.shape[0] != 2:
        S1 = S1.permute(0, 2, 1)
        S2 = S2.permute(0, 2, 1)
        transposed = True
    assert S2.shape[1] == S1.shape[1]

    # 1. Remove mean.
    mu1 = S1.mean(axis=-1, keepdims=True)
    mu2 = S2.mean(axis=-1, keepdims=True)

    X1 = S1 - mu1
    X2 = S2 - mu2

    # 2. Compute variance of X1 used for scale.
    var1 = torch.sum(X1**2, dim=1).sum(dim=1)

    # 3. The outer product of X1 and X2.
    K = X1.bmm(X2.permute(0, 2, 1))

    # 4. Solution that Maximizes trace(R'K) is R=U*V', where U, V are
    # singular vectors of K.
    U, s, V = torch.svd(K)

    # Construct Z that fixes the orientation of R to get det(R)=1.
    Z = torch.eye(U.shape[1], device=S1.device).unsqueeze(0)
    Z = Z.repeat(U.shape[0], 1, 1)
    Z[:, -1, -1] *= torch.sign(torch.det(U.bmm(V.permute(0, 2, 1))))

    # Construct R.
    R = V.bmm(Z.bmm(U.permute(0, 2, 1)))

    # 5. Recover scale.
    scale = torch.cat([torch.trace(x).unsqueeze(0) for x in R.bmm(K)]) / var1

    # 6. Recover translation.
    t = mu2 - (scale.unsqueeze(-1).unsqueeze(-1) * (R.bmm(mu1)))

    # 7. Error:
    S1_hat = scale.unsqueeze(-1).unsqueeze(-1) * R.bmm(S1) + t

    if transposed:
        S1_hat = S1_hat.permute(0, 2, 1)

    return S1_hat, (scale, R, t)


def compute_mpjpe(preds,
                  target,
                  valid_mask=None,
                  pck_joints=None,
                  sample_wise=True):
    """
    Mean per-joint position error (i.e. mean Euclidean distance)
    often referred to as "Protocol #1" in many papers.
    """
    assert preds.shape == target.shape, print(preds.shape,
                                              target.shape)  # BxJx3
    mpjpe = torch.norm(preds - target, p=2, dim=-1)  # BxJ

    if pck_joints is None:
        if sample_wise:
            mpjpe_seq = ((mpjpe * valid_mask.float()).sum(-1) /
                         valid_mask.float().sum(-1)
                         if valid_mask is not None else mpjpe.mean(-1))
        else:
            mpjpe_seq = mpjpe[valid_mask] if valid_mask is not None else mpjpe
        return mpjpe_seq
    else:
        mpjpe_pck_seq = mpjpe[:, pck_joints]
        return mpjpe_pck_seq


def align_by_parts(joints, align_inds=None):
    if align_inds is None:
        return joints
    pelvis = joints[:, align_inds].mean(1)
    return joints - torch.unsqueeze(pelvis, dim=1)


def calc_mpjpe(preds, target, align_inds=[0], sample_wise=True, trans=None):
    # Expects BxJx3
    valid_mask = target[:, :, 0] != -2.0
    # valid_mask = torch.BoolTensor(target[:, :, 0].shape)
    if align_inds is not None:
        preds_aligned = align_by_parts(preds, align_inds=align_inds)
        if trans is not None:
            preds_aligned += trans
        target_aligned = align_by_parts(target, align_inds=align_inds)
    else:
        preds_aligned, target_aligned = preds, target
    mpjpe_each = compute_mpjpe(preds_aligned,
                               target_aligned,
                               valid_mask=valid_mask,
                               sample_wise=sample_wise)
    return mpjpe_each


def calc_accel(preds, target):
    """
    Mean joint acceleration error
    often referred to as "Protocol #1" in many papers.
    """
    assert preds.shape == target.shape, print(preds.shape,
                                              target.shape)  # BxJx3
    assert preds.dim() == 3
    # Expects BxJx3
    # valid_mask = torch.BoolTensor(target[:, :, 0].shape)
    accel_gt = target[:-2] - 2 * target[1:-1] + target[2:]
    accel_pred = preds[:-2] - 2 * preds[1:-1] + preds[2:]
    normed = torch.linalg.norm(accel_pred - accel_gt, dim=-1)
    accel_seq = normed.mean(1)
    return accel_seq


def calc_pampjpe(preds, target, sample_wise=True, return_transform_mat=False):
    # Expects BxJx3
    target, preds = target.float(), preds.float()
    # extracting the keypoints that all samples have valid annotations
    # valid_mask = (target[:, :, 0] != -2.).sum(0) == len(target)
    # preds_tranformed, PA_transform = batch_compute_similarity_transform_torch(preds[:, valid_mask], target[:, valid_mask])
    # pa_mpjpe_each = compute_mpjpe(preds_tranformed, target[:, valid_mask], sample_wise=sample_wise)

    preds_tranformed, PA_transform = batch_compute_similarity_transform_torch(
        preds, target)
    pa_mpjpe_each = compute_mpjpe(preds_tranformed,
                                  target,
                                  sample_wise=sample_wise)

    if return_transform_mat:
        return pa_mpjpe_each, PA_transform
    else:
        return pa_mpjpe_each


# from action2motion
def calculate_diversity_multimodality(activations,
                                      labels,
                                      num_labels,
                                      diversity_times=200,
                                      multimodality_times=20):
    labels = labels.long()
    num_motions = activations.shape[0]  # len(labels)

    diversity = 0

    first_indices = np.random.randint(0, num_motions, diversity_times)
    second_indices = np.random.randint(0, num_motions, diversity_times)
    for first_idx, second_idx in zip(first_indices, second_indices):
        diversity += torch.dist(activations[first_idx, :],
                                activations[second_idx, :])
    diversity /= diversity_times

    multimodality = 0
    label_quotas = np.zeros(num_labels)
    label_quotas[labels.unique(
    )] = multimodality_times  # if a label does not appear in batch, its quota remains zero
    while np.any(label_quotas > 0):
        # print(label_quotas)
        first_idx = np.random.randint(0, num_motions)
        first_label = labels[first_idx]
        if not label_quotas[first_label]:
            continue

        second_idx = np.random.randint(0, num_motions)
        second_label = labels[second_idx]
        while first_label != second_label:
            second_idx = np.random.randint(0, num_motions)
            second_label = labels[second_idx]

        label_quotas[first_label] -= 1

        first_activation = activations[first_idx, :]
        second_activation = activations[second_idx, :]
        multimodality += torch.dist(first_activation, second_activation)

    multimodality /= (multimodality_times * num_labels)

    return diversity, multimodality


def calculate_fid(statistics_1, statistics_2):
    return calculate_frechet_distance_np(statistics_1[0], statistics_1[1],
                                         statistics_2[0], statistics_2[1])


# from: https://github.com/abdulfatir/gan-metrics-pytorch/blob/master/kid_score.py
def polynomial_mmd_averages(codes_g,
                            codes_r,
                            n_subsets=50,
                            subset_size=1000,
                            ret_var=True,
                            output=sys.stdout,
                            **kernel_args):
    m = min(codes_g.shape[0], codes_r.shape[0])
    mmds = np.zeros(n_subsets)
    if ret_var:
        vars = np.zeros(n_subsets)
    choice = np.random.choice

    replace = subset_size < len(codes_g)

    for i in range(n_subsets):
        g = codes_g[choice(len(codes_g), subset_size, replace=replace)]
        r = codes_r[choice(len(codes_r), subset_size, replace=replace)]
        o = polynomial_mmd(g, r, **kernel_args, var_at_m=m, ret_var=ret_var)
        if ret_var:
            mmds[i], vars[i] = o
        else:
            mmds[i] = o

    return (mmds, vars) if ret_var else mmds


def polynomial_mmd(codes_g,
                   codes_r,
                   degree=3,
                   gamma=None,
                   coef0=1,
                   var_at_m=None,
                   ret_var=True):
    from sklearn.metrics.pairwise import polynomial_kernel
    
    # use  k(x, y) = (gamma <x, y> + coef0)^degree
    # default gamma is 1 / dim
    X = codes_g
    Y = codes_r

    K_XX = polynomial_kernel(X, degree=degree, gamma=gamma, coef0=coef0)
    K_YY = polynomial_kernel(Y, degree=degree, gamma=gamma, coef0=coef0)
    K_XY = polynomial_kernel(X, Y, degree=degree, gamma=gamma, coef0=coef0)

    return _mmd2_and_variance(K_XX,
                              K_XY,
                              K_YY,
                              var_at_m=var_at_m,
                              ret_var=ret_var)


def _mmd2_and_variance(K_XX,
                       K_XY,
                       K_YY,
                       unit_diagonal=False,
                       mmd_est='unbiased',
                       block_size=1024,
                       var_at_m=None,
                       ret_var=True):
    # based on
    # https://github.com/dougalsutherland/opt-mmd/blob/master/two_sample/mmd.py
    # but changed to not compute the full kernel matrix at once
    m = K_XX.shape[0]
    assert K_XX.shape == (m, m)
    assert K_XY.shape == (m, m)
    assert K_YY.shape == (m, m)
    if var_at_m is None:
        var_at_m = m

    # Get the various sums of kernels that we'll use
    # Kts drop the diagonal, but we don't need to compute them explicitly
    if unit_diagonal:
        diag_X = diag_Y = 1
        sum_diag_X = sum_diag_Y = m
        sum_diag2_X = sum_diag2_Y = m
    else:
        diag_X = np.diagonal(K_XX)
        diag_Y = np.diagonal(K_YY)

        sum_diag_X = diag_X.sum()
        sum_diag_Y = diag_Y.sum()

        sum_diag2_X = _sqn(diag_X)
        sum_diag2_Y = _sqn(diag_Y)

    Kt_XX_sums = K_XX.sum(axis=1) - diag_X
    Kt_YY_sums = K_YY.sum(axis=1) - diag_Y
    K_XY_sums_0 = K_XY.sum(axis=0)
    K_XY_sums_1 = K_XY.sum(axis=1)

    Kt_XX_sum = Kt_XX_sums.sum()
    Kt_YY_sum = Kt_YY_sums.sum()
    K_XY_sum = K_XY_sums_0.sum()

    if mmd_est == 'biased':
        mmd2 = ((Kt_XX_sum + sum_diag_X) / (m * m) + (Kt_YY_sum + sum_diag_Y) /
                (m * m) - 2 * K_XY_sum / (m * m))
    else:
        assert mmd_est in {'unbiased', 'u-statistic'}
        mmd2 = (Kt_XX_sum + Kt_YY_sum) / (m * (m - 1))
        if mmd_est == 'unbiased':
            mmd2 -= 2 * K_XY_sum / (m * m)
        else:
            mmd2 -= 2 * (K_XY_sum - np.trace(K_XY)) / (m * (m - 1))

    if not ret_var:
        return mmd2

    Kt_XX_2_sum = _sqn(K_XX) - sum_diag2_X
    Kt_YY_2_sum = _sqn(K_YY) - sum_diag2_Y
    K_XY_2_sum = _sqn(K_XY)

    dot_XX_XY = Kt_XX_sums.dot(K_XY_sums_1)
    dot_YY_YX = Kt_YY_sums.dot(K_XY_sums_0)

    m1 = m - 1
    m2 = m - 2
    zeta1_est = (
        1 / (m * m1 * m2) *
        (_sqn(Kt_XX_sums) - Kt_XX_2_sum + _sqn(Kt_YY_sums) - Kt_YY_2_sum) - 1 /
        (m * m1)**2 * (Kt_XX_sum**2 + Kt_YY_sum**2) + 1 / (m * m * m1) *
        (_sqn(K_XY_sums_1) + _sqn(K_XY_sums_0) - 2 * K_XY_2_sum) -
        2 / m**4 * K_XY_sum**2 - 2 / (m * m * m1) * (dot_XX_XY + dot_YY_YX) +
        2 / (m**3 * m1) * (Kt_XX_sum + Kt_YY_sum) * K_XY_sum)
    zeta2_est = (1 / (m * m1) * (Kt_XX_2_sum + Kt_YY_2_sum) - 1 / (m * m1)**2 *
                 (Kt_XX_sum**2 + Kt_YY_sum**2) + 2 / (m * m) * K_XY_2_sum -
                 2 / m**4 * K_XY_sum**2 - 4 / (m * m * m1) *
                 (dot_XX_XY + dot_YY_YX) + 4 / (m**3 * m1) *
                 (Kt_XX_sum + Kt_YY_sum) * K_XY_sum)
    var_est = (4 * (var_at_m - 2) / (var_at_m * (var_at_m - 1)) * zeta1_est +
               2 / (var_at_m * (var_at_m - 1)) * zeta2_est)

    return mmd2, var_est


def _sqn(arr):
    flat = np.ravel(arr)
    return flat.dot(flat)


def calculate_kid(real_activations, generated_activations):
    kid_values = polynomial_mmd_averages(real_activations,
                                         generated_activations,
                                         n_subsets=100)
    results = (kid_values[0].mean(), kid_values[0].std())
    return results