File size: 6,475 Bytes
4409449
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import os
from pytorch_lightning import LightningModule, Trainer
from pytorch_lightning.callbacks import Callback, RichProgressBar, ModelCheckpoint


def build_callbacks(cfg, logger=None, phase='test', **kwargs):
    callbacks = []
    logger = logger

    # Rich Progress Bar
    callbacks.append(progressBar())

    # Checkpoint Callback
    if phase == 'train':
        callbacks.extend(getCheckpointCallback(cfg, logger=logger, **kwargs))
        
    return callbacks

def getCheckpointCallback(cfg, logger=None, **kwargs):
    callbacks = []
    # Logging
    metric_monitor = {
        "loss_total": "total/train",
        "Train_jf": "recons/text2jfeats/train",
        "Val_jf": "recons/text2jfeats/val",
        "Train_rf": "recons/text2rfeats/train",
        "Val_rf": "recons/text2rfeats/val",
        "APE root": "Metrics/APE_root",
        "APE mean pose": "Metrics/APE_mean_pose",
        "AVE root": "Metrics/AVE_root",
        "AVE mean pose": "Metrics/AVE_mean_pose",
        "R_TOP_1": "Metrics/R_precision_top_1",
        "R_TOP_2": "Metrics/R_precision_top_2",
        "R_TOP_3": "Metrics/R_precision_top_3",
        "gt_R_TOP_3": "Metrics/gt_R_precision_top_3",
        "FID": "Metrics/FID",
        "gt_FID": "Metrics/gt_FID",
        "Diversity": "Metrics/Diversity",
        "MM dist": "Metrics/Matching_score",
        "Accuracy": "Metrics/accuracy",
    }
    callbacks.append(
        progressLogger(logger,metric_monitor=metric_monitor,log_every_n_steps=1))

    # Save 10 latest checkpoints
    checkpointParams = {
        'dirpath': os.path.join(cfg.FOLDER_EXP, "checkpoints"),
        'filename': "{epoch}",
        'monitor': "step",
        'mode': "max",
        'every_n_epochs': cfg.LOGGER.VAL_EVERY_STEPS,
        'save_top_k': 8,
        'save_last': True,
        'save_on_train_epoch_end': True
    }
    callbacks.append(ModelCheckpoint(**checkpointParams))

    # Save checkpoint every n*10 epochs
    checkpointParams.update({
        'every_n_epochs':
        cfg.LOGGER.VAL_EVERY_STEPS * 10,
        'save_top_k':
        -1,
        'save_last':
        False
    })
    callbacks.append(ModelCheckpoint(**checkpointParams))

    metrics = cfg.METRIC.TYPE
    metric_monitor_map = {
        'TemosMetric': {
            'Metrics/APE_root': {
                'abbr': 'APEroot',
                'mode': 'min'
            },
        },
        'TM2TMetrics': {
            'Metrics/FID': {
                'abbr': 'FID',
                'mode': 'min'
            },
            'Metrics/R_precision_top_3': {
                'abbr': 'R3',
                'mode': 'max'
            }
        },
        'MRMetrics': {
            'Metrics/MPJPE': {
                'abbr': 'MPJPE',
                'mode': 'min'
            }
        },
        'HUMANACTMetrics': {
            'Metrics/Accuracy': {
                'abbr': 'Accuracy',
                'mode': 'max'
            }
        },
        'UESTCMetrics': {
            'Metrics/Accuracy': {
                'abbr': 'Accuracy',
                'mode': 'max'
            }
        },
        'UncondMetrics': {
            'Metrics/FID': {
                'abbr': 'FID',
                'mode': 'min'
            }
        }
    }

    checkpointParams.update({
        'every_n_epochs': cfg.LOGGER.VAL_EVERY_STEPS,
        'save_top_k': 1,
    })

    for metric in metrics:
        if metric in metric_monitor_map.keys():
            metric_monitors = metric_monitor_map[metric]

            # Delete R3 if training VAE
            if cfg.TRAIN.STAGE == 'vae' and metric == 'TM2TMetrics':
                del metric_monitors['Metrics/R_precision_top_3']

            for metric_monitor in metric_monitors:
                checkpointParams.update({
                    'filename':
                    metric_monitor_map[metric][metric_monitor]['mode']
                    + "-" +
                    metric_monitor_map[metric][metric_monitor]['abbr']
                    + "{ep}",
                    'monitor':
                    metric_monitor,
                    'mode':
                    metric_monitor_map[metric][metric_monitor]['mode'],
                })
                callbacks.append(
                    ModelCheckpoint(**checkpointParams))
    return callbacks

class progressBar(RichProgressBar):
    def __init__(self, ):
        super().__init__()

    def get_metrics(self, trainer, model):
        # Don't show the version number
        items = super().get_metrics(trainer, model)
        items.pop("v_num", None)
        return items

class progressLogger(Callback):
    def __init__(self,
                 logger,
                 metric_monitor: dict,
                 precision: int = 3,
                 log_every_n_steps: int = 1):
        # Metric to monitor
        self.logger = logger
        self.metric_monitor = metric_monitor
        self.precision = precision
        self.log_every_n_steps = log_every_n_steps

    def on_train_start(self, trainer: Trainer, pl_module: LightningModule,
                       **kwargs) -> None:
        self.logger.info("Training started")

    def on_train_end(self, trainer: Trainer, pl_module: LightningModule,
                     **kwargs) -> None:
        self.logger.info("Training done")

    def on_validation_epoch_end(self, trainer: Trainer,
                                pl_module: LightningModule, **kwargs) -> None:
        if trainer.sanity_checking:
            self.logger.info("Sanity checking ok.")

    def on_train_epoch_end(self,
                           trainer: Trainer,
                           pl_module: LightningModule,
                           padding=False,
                           **kwargs) -> None:
        metric_format = f"{{:.{self.precision}e}}"
        line = f"Epoch {trainer.current_epoch}"
        if padding:
            line = f"{line:>{len('Epoch xxxx')}}"  # Right padding

        if trainer.current_epoch % self.log_every_n_steps == 0:
            metrics_str = []

            losses_dict = trainer.callback_metrics
            for metric_name, dico_name in self.metric_monitor.items():
                if dico_name in losses_dict:
                    metric = losses_dict[dico_name].item()
                    metric = metric_format.format(metric)
                    metric = f"{metric_name} {metric}"
                    metrics_str.append(metric)

            line = line + ": " + "   ".join(metrics_str)

        self.logger.info(line)