File size: 5,938 Bytes
fc16538
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# TRI-VIDAR - Copyright 2022 Toyota Research Institute.  All rights reserved.

import torch
import torch.nn.functional as F

from vidar.utils.decorators import iterate1


def to_global_pose(pose, zero_origin=False):
    """Get global pose coordinates from current and context poses"""
    if zero_origin:
        pose[0].T[[0]] = torch.eye(4, device=pose[0].device, dtype=pose[0].dtype)
    for b in range(1, len(pose[0])):
        pose[0].T[[b]] = (pose[0][b] * pose[0][0]).T.float()
    for key in pose.keys():
        if key != 0:
            pose[key] = pose[key] * pose[0]
    return pose


# def to_global_pose(pose, zero_origin=False):
#     """Get global pose coordinates from current and context poses"""
#     if zero_origin:
#         pose[(0, 0)].T = torch.eye(4, device=pose[(0, 0)].device, dtype=pose[(0, 0)].dtype). \
#             repeat(pose[(0, 0)].shape[0], 1, 1)
#     for key in pose.keys():
#         if key[0] == 0 and key[1] != 0:
#             pose[key].T = (pose[key] * pose[(0, 0)]).T
#     for key in pose.keys():
#         if key[0] != 0:
#             pose[key] = pose[key] * pose[(0, 0)]
#     return pose


def euler2mat(angle):
    """Convert euler angles to rotation matrix"""
    B = angle.size(0)
    x, y, z = angle[:, 0], angle[:, 1], angle[:, 2]

    cosz = torch.cos(z)
    sinz = torch.sin(z)

    zeros = z.detach() * 0
    ones = zeros.detach() + 1
    zmat = torch.stack([ cosz, -sinz, zeros,
                         sinz,  cosz, zeros,
                        zeros, zeros,  ones], dim=1).view(B, 3, 3)

    cosy = torch.cos(y)
    siny = torch.sin(y)

    ymat = torch.stack([ cosy, zeros,  siny,
                        zeros,  ones, zeros,
                        -siny, zeros,  cosy], dim=1).view(B, 3, 3)

    cosx = torch.cos(x)
    sinx = torch.sin(x)

    xmat = torch.stack([ ones, zeros, zeros,
                        zeros,  cosx, -sinx,
                        zeros,  sinx,  cosx], dim=1).view(B, 3, 3)

    rot_mat = xmat.bmm(ymat).bmm(zmat)
    return rot_mat


def pose_vec2mat(vec, mode='euler'):
    """Convert translation and Euler rotation to a [B,4,4] torch.Tensor transformation matrix"""
    if mode is None:
        return vec
    trans, rot = vec[:, :3].unsqueeze(-1), vec[:, 3:]
    if mode == 'euler':
        rot_mat = euler2mat(rot)
    else:
        raise ValueError('Rotation mode not supported {}'.format(mode))
    mat = torch.cat([rot_mat, trans], dim=2)  # [B,3,4]
    return mat


@iterate1
def invert_pose(T):
    """Invert a [B,4,4] torch.Tensor pose"""
    Tinv = torch.eye(4, device=T.device, dtype=T.dtype).repeat([len(T), 1, 1])
    Tinv[:, :3, :3] = torch.transpose(T[:, :3, :3], -2, -1)
    Tinv[:, :3, -1] = torch.bmm(-1. * Tinv[:, :3, :3], T[:, :3, -1].unsqueeze(-1)).squeeze(-1)
    return Tinv
    # return torch.linalg.inv(T)


def tvec_to_translation(tvec):
    """Convert translation vector to translation matrix (no rotation)"""
    batch_size = tvec.shape[0]
    T = torch.eye(4).to(device=tvec.device).repeat(batch_size, 1, 1)
    t = tvec.contiguous().view(-1, 3, 1)
    T[:, :3, 3, None] = t
    return T


def euler2rot(euler):
    """Convert Euler parameters to a [B,3,3] torch.Tensor rotation matrix"""
    euler_norm = torch.norm(euler, 2, 2, True)
    axis = euler / (euler_norm + 1e-7)

    cos_a = torch.cos(euler_norm)
    sin_a = torch.sin(euler_norm)
    cos1_a = 1 - cos_a

    x = axis[..., 0].unsqueeze(1)
    y = axis[..., 1].unsqueeze(1)
    z = axis[..., 2].unsqueeze(1)

    x_sin = x * sin_a
    y_sin = y * sin_a
    z_sin = z * sin_a
    x_cos1 = x * cos1_a
    y_cos1 = y * cos1_a
    z_cos1 = z * cos1_a

    xx_cos1 = x * x_cos1
    yy_cos1 = y * y_cos1
    zz_cos1 = z * z_cos1
    xy_cos1 = x * y_cos1
    yz_cos1 = y * z_cos1
    zx_cos1 = z * x_cos1

    batch_size = euler.shape[0]
    rot = torch.zeros((batch_size, 4, 4)).to(device=euler.device)

    rot[:, 0, 0] = torch.squeeze(xx_cos1 + cos_a)
    rot[:, 0, 1] = torch.squeeze(xy_cos1 - z_sin)
    rot[:, 0, 2] = torch.squeeze(zx_cos1 + y_sin)
    rot[:, 1, 0] = torch.squeeze(xy_cos1 + z_sin)
    rot[:, 1, 1] = torch.squeeze(yy_cos1 + cos_a)
    rot[:, 1, 2] = torch.squeeze(yz_cos1 - x_sin)
    rot[:, 2, 0] = torch.squeeze(zx_cos1 - y_sin)
    rot[:, 2, 1] = torch.squeeze(yz_cos1 + x_sin)
    rot[:, 2, 2] = torch.squeeze(zz_cos1 + cos_a)
    rot[:, 3, 3] = 1

    return rot


def vec2mat(euler, translation, invert=False):
    """Convert Euler rotation and translation to a [B,4,4] torch.Tensor transformation matrix"""
    R = euler2rot(euler)
    t = translation.clone()

    if invert:
        R = R.transpose(1, 2)
        t *= -1

    T = tvec_to_translation(t)

    if invert:
        M = torch.matmul(R, T)
    else:
        M = torch.matmul(T, R)

    return M


def rot2quat(R):
    """Convert a [B,3,3] rotation matrix to [B,4] quaternions"""
    b, _, _ = R.shape
    q = torch.ones((b, 4), device=R.device)

    R00 = R[:, 0, 0]
    R01 = R[:, 0, 1]
    R02 = R[:, 0, 2]
    R10 = R[:, 1, 0]
    R11 = R[:, 1, 1]
    R12 = R[:, 1, 2]
    R20 = R[:, 2, 0]
    R21 = R[:, 2, 1]
    R22 = R[:, 2, 2]

    q[:, 3] = torch.sqrt(1.0 + R00 + R11 + R22) / 2
    q[:, 0] = (R21 - R12) / (4 * q[:, 3])
    q[:, 1] = (R02 - R20) / (4 * q[:, 3])
    q[:, 2] = (R10 - R01) / (4 * q[:, 3])

    return q


def quat2rot(q):
    """Convert [B,4] quaternions to [B,3,3] rotation matrix"""
    b, _ = q.shape
    q = F.normalize(q, dim=1)
    R = torch.ones((b, 3, 3), device=q.device)

    qr = q[:, 0]
    qi = q[:, 1]
    qj = q[:, 2]
    qk = q[:, 3]

    R[:, 0, 0] = 1 - 2 * (qj ** 2 + qk ** 2)
    R[:, 0, 1] = 2 * (qj * qi - qk * qr)
    R[:, 0, 2] = 2 * (qi * qk + qr * qj)
    R[:, 1, 0] = 2 * (qj * qi + qk * qr)
    R[:, 1, 1] = 1 - 2 * (qi ** 2 + qk ** 2)
    R[:, 1, 2] = 2 * (qj * qk - qi * qr)
    R[:, 2, 0] = 2 * (qk * qi - qj * qr)
    R[:, 2, 1] = 2 * (qj * qk + qi * qr)
    R[:, 2, 2] = 1 - 2 * (qi ** 2 + qj ** 2)

    return R