Spaces:
Runtime error
Runtime error
File size: 15,249 Bytes
fc16538 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 |
# TRI-VIDAR - Copyright 2022 Toyota Research Institute. All rights reserved.
import csv
import os
import cv2
import numpy as np
from vidar.datasets.BaseDataset import BaseDataset
from vidar.datasets.utils.FolderTree import FolderTree
from vidar.datasets.utils.misc import \
convert_ontology, initialize_ontology, stack_sample, make_relative_pose
from vidar.utils.data import dict_remove_nones
from vidar.utils.decorators import iterate1
from vidar.utils.read import read_image
def make_tree(path, sub_folder, camera, mode, context):
"""
Create a folder tree for a certain task
Parameters
----------
path : String
Data path
sub_folder : String
Subfolder path
camera : Int
Camera index
mode : String
Which task we are using
context : list[Int]
Context samples
Returns
-------
tree : FolderTree
Folder tree containing task data
"""
path = os.path.join(path, sub_folder)
sub_folders = '{}/frames/{}/Camera_{}'.format(mode, sub_folder, camera)
return FolderTree(path, sub_folders=sub_folders, context=context)
def semantic_color_to_id(semantic_color, ontology):
"""
Convert semantic color to semantic ID
Parameters
----------
semantic_color : numpy.Array
Matrix with semantic colors [H, W, 3]
ontology : Dict
Ontology dictionary, with {id: color}
Returns
-------
semantic_id : numpy.Array
Matrix with semantic IDs [H, W]
"""
# Create semantic ID map
semantic_id = np.zeros(semantic_color.shape[:2])
# Loop over every ontology item and assign ID to color
for key, val in ontology.items():
idx = (semantic_color[:, :, 0] == val['color'][0]) & \
(semantic_color[:, :, 1] == val['color'][1]) & \
(semantic_color[:, :, 2] == val['color'][2])
semantic_id[idx] = key
# Return semantic ID map
return semantic_id
class VKITTI2Dataset(BaseDataset):
"""
VKITTI2 dataset class
Parameters
----------
path : String
Path to the dataset
split : String {'train', 'val', 'test'}
Which dataset split to use
ontology : String
Which ontology should be used
return_ontology : Bool
Returns ontology information in the sample
data_transform : Function
Transformations applied to the sample
"""
def __init__(self, split, tag=None, **kwargs):
super().__init__(**kwargs)
self.tag = 'vkitti2' if tag is None else tag
# Store variables
self.split = split
self.mode = 'clone'
# Initialize ontology
if self.with_semantic:
self.ontology, self.ontology_convert = initialize_ontology('vkitti2', self.ontology)
self.return_ontology = self.return_ontology
# Create RGB tree
self.rgb_tree = make_tree(
self.path, 'rgb', 0, self.mode, self.context)
# Create semantic tree
if self.with_semantic:
self.semantic_tree = make_tree(
self.path, 'classSegmentation', 0, self.mode, self.context)
# Create instance tree
if self.with_instance:
self.instance_tree = make_tree(
self.path, 'instanceSegmentation', 0, self.mode, self.context)
def __len__(self):
"""Dataset length"""
return len(self.rgb_tree)
@staticmethod
@iterate1
def _get_depth(filename):
"""Get depth map from filename"""
filename = filename.replace('rgb', 'depth').replace('jpg', 'png')
return cv2.imread(filename, cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH) / 100.
@staticmethod
@iterate1
def _get_intrinsics(filename, camera, mode):
"""Get intrinsics from filename"""
# Get sample number in the scene
number = int(filename.split('/')[-1].replace('rgb_', '').replace('.jpg', ''))
# Get intrinsic filename
filename_idx = filename.rfind(mode) + len(mode)
filename_intrinsics = os.path.join(filename[:filename_idx].replace(
'/rgb/', '/textgt/'), 'intrinsic.txt')
# Open intrinsic file
with open(filename_intrinsics, 'r') as f:
# Get intrinsic parameters
lines = list(csv.reader(f, delimiter=' '))[1:]
params = [float(p) for p in lines[number * 2 + camera][2:]]
# Build intrinsics matrix
intrinsics = np.array([[params[0], 0.0, params[2]],
[0.0, params[1], params[3]],
[0.0, 0.0, 1.0]]).astype(np.float32)
# Return intrinsics
return intrinsics
@staticmethod
@iterate1
def _get_pose(filename, camera, mode):
"""Get pose from filename"""
# Get sample number in the scene
number = int(filename.split('/')[-1].replace('rgb_', '').replace('.jpg', ''))
# Get intrinsic filename
filename_idx = filename.rfind(mode) + len(mode)
filename_pose = os.path.join(filename[:filename_idx].replace(
'/rgb/', '/textgt/'), 'extrinsic.txt')
# Open intrinsics file
with open(filename_pose, 'r') as f:
# Get pose parameters
lines = list(csv.reader(f, delimiter=' '))[1:]
pose = np.array([float(p) for p in lines[number * 2 + camera][2:]]).reshape(4, 4)
# Return pose
return pose
@staticmethod
def _get_ontology(filename, mode):
"""Get ontology from filename"""
# Get ontology filename
filename_idx = filename.rfind(mode) + len(mode)
filename_ontology = os.path.join(filename[:filename_idx].replace(
'/classSegmentation/', '/textgt/'), 'colors.txt')
# Open ontology file
with open(filename_ontology, 'r') as f:
# Get ontology parameters
lines = list(csv.reader(f, delimiter=' '))[1:]
from collections import OrderedDict
ontology = OrderedDict()
for i, line in enumerate(lines):
ontology[i] = {
'name': line[0],
'color': np.array([int(clr) for clr in line[1:]])
}
return ontology
def _get_semantic(self, filename):
"""Get semantic from filename"""
# Get semantic color map
semantic_color = {key: np.array(val) for key, val in read_image(filename).items()}
# Return semantic id map
semantic_id = {key: semantic_color_to_id(val, self.ontology) for key, val in semantic_color.items()}
return convert_ontology(semantic_id, self.ontology_convert)
@staticmethod
def _get_instance(filename):
"""Get instance from filename"""
# Get instance id map
return np.array(read_image(filename))
@staticmethod
def _get_bbox3d(filename):
bboxes3d_dim = []
bboxes3d_pos = []
bboxes3d_rot = []
bboxes3d_idx = []
k = int(filename.split('/')[-1][4:-4])
bb = '/'.join(filename.replace('/rgb/', '/textgt/').split('/')[:-4])
bb += '/pose.txt'
with open(bb, 'r') as file:
for i, f in enumerate(file):
if i == 0:
continue
line = [float(a) for a in f.split(' ')]
if line[0] == k and line[1] == 0:
bboxes3d_dim.append(np.array([line[6], line[5], line[4]]))
bboxes3d_pos.append(np.array(line[13:16]))
# bboxes3d_rot.append(np.array([line[18], line[17], line[16]]))
bboxes3d_rot.append(np.array([line[17], line[16], line[18]]))
bboxes3d_idx.append(np.array([line[2]]))
return {
'dim': np.stack(bboxes3d_dim, 0),
'pos': np.stack(bboxes3d_pos, 0),
'rot': np.stack(bboxes3d_rot, 0),
'idx': np.stack(bboxes3d_idx, 0),
}
@staticmethod
@iterate1
def _get_optical_flow(filename, mode):
"""
Get optical flow from filename. Code obtained here:
https://europe.naverlabs.com/research/computer-vision-research-naver-labs-europe/proxy-virtual-worlds-vkitti-2/
"""
# Get filename
if mode == 'bwd':
filename = filename.replace('rgb', 'backwardFlow')
elif mode == 'fwd':
filename = filename.replace('/rgb/', '/forwardFlow/').replace('rgb_', 'flow_')
else:
raise ValueError('Invalid optical flow mode')
filename = filename.replace('jpg', 'png')
# Return None if file does not exist
if not os.path.exists(filename):
return None
else:
# Get optical flow
optical_flow = cv2.imread(filename, cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH)
h, w = optical_flow.shape[:2]
# Get invalid optical flow pixels
invalid = optical_flow[..., 0] == 0
# Normalize and scale optical flow values
optical_flow = 2.0 / (2 ** 16 - 1.0) * optical_flow[..., 2:0:-1].astype('f4') - 1.
optical_flow[..., 0] *= w - 1
optical_flow[..., 1] *= h - 1
# Remove invalid pixels
optical_flow[invalid] = 0
return optical_flow
@staticmethod
@iterate1
def _get_scene_flow(filename, mode):
"""Get scene flow from filename. Code obtained here:
https://europe.naverlabs.com/research/computer-vision-research-naver-labs-europe/proxy-virtual-worlds-vkitti-2/
"""
# Get filename
if mode == 'bwd':
filename = filename.replace('rgb', 'backwardSceneFlow')
elif mode == 'fwd':
filename = filename.replace('/rgb/', '/forwardSceneFlow/').replace('rgb_', 'sceneFlow_')
else:
raise ValueError('Invalid scene flow mode')
filename = filename.replace('jpg', 'png')
# Return None if file does not exist
if not os.path.exists(filename):
return None
else:
# Get scene flow
scene_flow = cv2.imread(filename, cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH)
# Return normalized and scaled optical flow (-10m to 10m)
return (scene_flow[:, :, ::-1] * 2. / 65535. - 1.) * 10.
def __getitem__(self, idx):
"""Get dataset sample"""
samples = []
for camera in self.cameras:
# Get filename
filename = self.rgb_tree.get_item(idx)
filename = {key: val.replace('Camera_0', 'Camera_{}'.format(camera))
for key, val in filename.items()}
# Base sample
sample = {
'idx': idx,
'tag': self.tag,
'filename': self.relative_path(filename),
'splitname': '%s_%010d' % (self.split, idx),
}
# Image and intrinsics
sample.update({
'rgb': read_image(filename),
'intrinsics': self._get_intrinsics(filename, camera, self.mode),
})
# If returning pose
if self.with_pose:
sample['pose'] = self._get_pose(filename, camera, self.mode)
# If returning depth
if self.with_depth:
sample['depth'] = self._get_depth(filename)
# If returning input depth
if self.with_input_depth:
sample['input_depth'] = self._get_depth(filename)
# If returning semantic
if self.with_semantic:
filename = self.semantic_tree.get_item(idx)
sample.update({'semantic': self._get_semantic(filename)})
# If returning ontology
if self.return_ontology:
sample.update({'ontology': self._get_ontology(filename, self.mode)})
# If returning instance
if self.with_instance:
filename = self.instance_tree.get_item(idx)
sample.update({'instance': self._get_instance(filename)})
# If returning 3D bounding boxes
if self.with_bbox3d:
filename = self.rgb_tree.get_item(idx)
sample.update({
'bboxes3d': self._get_bbox3d(filename)
})
# If returning optical flow
if self.with_optical_flow:
sample['bwd_optical_flow'] = \
dict_remove_nones(self._get_optical_flow(filename, 'bwd'))
sample['fwd_optical_flow'] = \
dict_remove_nones(self._get_optical_flow(filename, 'fwd'))
# If returning scene flow
if self.with_scene_flow:
sample['bwd_scene_flow'] = \
dict_remove_nones(self._get_scene_flow(filename, 'bwd'))
sample['fwd_scene_flow'] = \
dict_remove_nones(self._get_scene_flow(filename, 'fwd'))
# If returning context information
if self.with_context:
# Get context filenames
filename_context = self.rgb_tree.get_context(idx)
filename_context = {key: val.replace('Camera_0', 'Camera_{}'.format(camera))
for key, val in filename_context.items()}
# Get RGB context
sample['rgb'].update(read_image(filename_context))
# Get pose context
if self.with_pose:
sample['pose'].update(self._get_pose(filename_context, camera, self.mode))
# Get depth context
if self.with_depth_context:
sample['depth'].update(self._get_depth(filename_context))
# Get input depth context
if self.with_input_depth_context:
sample['input_depth'].update(self._get_depth(filename_context))
# Get semantic context
if self.with_semantic_context:
sample['semantic'].update(self._get_semantic(self.semantic_tree.get_context(idx)))
# Get optical flow context
if self.with_optical_flow_context:
sample['bwd_optical_flow'].update(
dict_remove_nones(self._get_optical_flow(filename_context, 'bwd')))
sample['fwd_optical_flow'].update(
dict_remove_nones(self._get_optical_flow(filename_context, 'fwd')))
# Get scene flow context
if self.with_scene_flow_context:
sample['bwd_scene_flow'].update(
dict_remove_nones(self._get_scene_flow(filename_context, 'bwd')))
sample['fwd_scene_flow'].update(
dict_remove_nones(self._get_scene_flow(filename_context, 'fwd')))
# Stack sample
samples.append(sample)
# Make relative poses
samples = make_relative_pose(samples)
# Transform data
if self.data_transform:
samples = self.data_transform(samples)
# Return stacked sample
return stack_sample(samples)
|