File size: 14,203 Bytes
69e8a46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
import base64
import io
import json
import queue
import random
import traceback
import wave
from argparse import ArgumentParser
from http import HTTPStatus
from pathlib import Path
from typing import Annotated, Literal, Optional

import librosa
import numpy as np
import pyrootutils
import soundfile as sf
import torch
from kui.asgi import (
    Body,
    HTTPException,
    HttpView,
    JSONResponse,
    Kui,
    OpenAPI,
    StreamResponse,
)
from kui.asgi.routing import MultimethodRoutes
from loguru import logger
from pydantic import BaseModel, Field

pyrootutils.setup_root(__file__, indicator=".project-root", pythonpath=True)

# from fish_speech.models.vqgan.lit_module import VQGAN
from fish_speech.models.vqgan.modules.firefly import FireflyArchitecture
from tools.auto_rerank import batch_asr, calculate_wer, is_chinese, load_model
from tools.llama.generate import (
    GenerateRequest,
    GenerateResponse,
    WrappedGenerateResponse,
    launch_thread_safe_queue,
)
from tools.vqgan.inference import load_model as load_decoder_model


def wav_chunk_header(sample_rate=44100, bit_depth=16, channels=1):
    buffer = io.BytesIO()

    with wave.open(buffer, "wb") as wav_file:
        wav_file.setnchannels(channels)
        wav_file.setsampwidth(bit_depth // 8)
        wav_file.setframerate(sample_rate)

    wav_header_bytes = buffer.getvalue()
    buffer.close()
    return wav_header_bytes


# Define utils for web server
async def http_execption_handler(exc: HTTPException):
    return JSONResponse(
        dict(
            statusCode=exc.status_code,
            message=exc.content,
            error=HTTPStatus(exc.status_code).phrase,
        ),
        exc.status_code,
        exc.headers,
    )


async def other_exception_handler(exc: "Exception"):
    traceback.print_exc()

    status = HTTPStatus.INTERNAL_SERVER_ERROR
    return JSONResponse(
        dict(statusCode=status, message=str(exc), error=status.phrase),
        status,
    )


def load_audio(reference_audio, sr):
    if len(reference_audio) > 255 or not Path(reference_audio).exists():
        try:
            audio_data = base64.b64decode(reference_audio)
            reference_audio = io.BytesIO(audio_data)
        except base64.binascii.Error:
            raise ValueError("Invalid path or base64 string")

    audio, _ = librosa.load(reference_audio, sr=sr, mono=True)
    return audio


def encode_reference(*, decoder_model, reference_audio, enable_reference_audio):
    if enable_reference_audio and reference_audio is not None:
        # Load audios, and prepare basic info here
        reference_audio_content = load_audio(
            reference_audio, decoder_model.spec_transform.sample_rate
        )

        audios = torch.from_numpy(reference_audio_content).to(decoder_model.device)[
            None, None, :
        ]
        audio_lengths = torch.tensor(
            [audios.shape[2]], device=decoder_model.device, dtype=torch.long
        )
        logger.info(
            f"Loaded audio with {audios.shape[2] / decoder_model.spec_transform.sample_rate:.2f} seconds"
        )

        # VQ Encoder
        if isinstance(decoder_model, FireflyArchitecture):
            prompt_tokens = decoder_model.encode(audios, audio_lengths)[0][0]

        logger.info(f"Encoded prompt: {prompt_tokens.shape}")
    else:
        prompt_tokens = None
        logger.info("No reference audio provided")

    return prompt_tokens


def decode_vq_tokens(
    *,
    decoder_model,
    codes,
):
    feature_lengths = torch.tensor([codes.shape[1]], device=decoder_model.device)
    logger.info(f"VQ features: {codes.shape}")

    if isinstance(decoder_model, FireflyArchitecture):
        # VQGAN Inference
        return decoder_model.decode(
            indices=codes[None],
            feature_lengths=feature_lengths,
        ).squeeze()

    raise ValueError(f"Unknown model type: {type(decoder_model)}")


routes = MultimethodRoutes(base_class=HttpView)


def get_random_paths(base_path, data, speaker, emotion):
    if base_path and data and speaker and emotion and (Path(base_path).exists()):
        if speaker in data and emotion in data[speaker]:
            files = data[speaker][emotion]
            lab_files = [f for f in files if f.endswith(".lab")]
            wav_files = [f for f in files if f.endswith(".wav")]

            if lab_files and wav_files:
                selected_lab = random.choice(lab_files)
                selected_wav = random.choice(wav_files)

                lab_path = Path(base_path) / speaker / emotion / selected_lab
                wav_path = Path(base_path) / speaker / emotion / selected_wav
                if lab_path.exists() and wav_path.exists():
                    return lab_path, wav_path

    return None, None


def load_json(json_file):
    if not json_file:
        logger.info("Not using a json file")
        return None
    try:
        with open(json_file, "r", encoding="utf-8") as file:
            data = json.load(file)
    except FileNotFoundError:
        logger.warning(f"ref json not found: {json_file}")
        data = None
    except Exception as e:
        logger.warning(f"Loading json failed: {e}")
        data = None
    return data


class InvokeRequest(BaseModel):
    text: str = "你说的对, 但是原神是一款由米哈游自主研发的开放世界手游."
    reference_text: Optional[str] = None
    reference_audio: Optional[str] = None
    max_new_tokens: int = 1024
    chunk_length: Annotated[int, Field(ge=0, le=500, strict=True)] = 100
    top_p: Annotated[float, Field(ge=0.1, le=1.0, strict=True)] = 0.7
    repetition_penalty: Annotated[float, Field(ge=0.9, le=2.0, strict=True)] = 1.2
    temperature: Annotated[float, Field(ge=0.1, le=1.0, strict=True)] = 0.7
    emotion: Optional[str] = None
    format: Literal["wav", "mp3", "flac"] = "wav"
    streaming: bool = False
    ref_json: Optional[str] = "ref_data.json"
    ref_base: Optional[str] = "ref_data"
    speaker: Optional[str] = None


def get_content_type(audio_format):
    if audio_format == "wav":
        return "audio/wav"
    elif audio_format == "flac":
        return "audio/flac"
    elif audio_format == "mp3":
        return "audio/mpeg"
    else:
        return "application/octet-stream"


@torch.inference_mode()
def inference(req: InvokeRequest):
    # Parse reference audio aka prompt
    prompt_tokens = None

    ref_data = load_json(req.ref_json)
    ref_base = req.ref_base

    lab_path, wav_path = get_random_paths(ref_base, ref_data, req.speaker, req.emotion)

    if lab_path and wav_path:
        with open(lab_path, "r", encoding="utf-8") as lab_file:
            ref_text = lab_file.read()
        req.reference_audio = wav_path
        req.reference_text = ref_text
        logger.info("ref_path: " + str(wav_path))
        logger.info("ref_text: " + ref_text)

    # Parse reference audio aka prompt
    prompt_tokens = encode_reference(
        decoder_model=decoder_model,
        reference_audio=req.reference_audio,
        enable_reference_audio=req.reference_audio is not None,
    )
    logger.info(f"ref_text: {req.reference_text}")
    # LLAMA Inference
    request = dict(
        device=decoder_model.device,
        max_new_tokens=req.max_new_tokens,
        text=req.text,
        top_p=req.top_p,
        repetition_penalty=req.repetition_penalty,
        temperature=req.temperature,
        compile=args.compile,
        iterative_prompt=req.chunk_length > 0,
        chunk_length=req.chunk_length,
        max_length=2048,
        prompt_tokens=prompt_tokens,
        prompt_text=req.reference_text,
    )

    response_queue = queue.Queue()
    llama_queue.put(
        GenerateRequest(
            request=request,
            response_queue=response_queue,
        )
    )

    if req.streaming:
        yield wav_chunk_header()

    segments = []
    while True:
        result: WrappedGenerateResponse = response_queue.get()
        if result.status == "error":
            raise result.response
            break

        result: GenerateResponse = result.response
        if result.action == "next":
            break

        with torch.autocast(
            device_type=decoder_model.device.type, dtype=args.precision
        ):
            fake_audios = decode_vq_tokens(
                decoder_model=decoder_model,
                codes=result.codes,
            )

        fake_audios = fake_audios.float().cpu().numpy()

        if req.streaming:
            yield (fake_audios * 32768).astype(np.int16).tobytes()
        else:
            segments.append(fake_audios)

    if req.streaming:
        return

    if len(segments) == 0:
        raise HTTPException(
            HTTPStatus.INTERNAL_SERVER_ERROR,
            content="No audio generated, please check the input text.",
        )

    fake_audios = np.concatenate(segments, axis=0)
    yield fake_audios


def auto_rerank_inference(req: InvokeRequest, use_auto_rerank: bool = True):
    if not use_auto_rerank:
        # 如果不使用 auto_rerank,直接调用原始的 inference 函数
        return inference(req)

    zh_model, en_model = load_model()
    max_attempts = 5
    best_wer = float("inf")
    best_audio = None

    for attempt in range(max_attempts):
        # 调用原始的 inference 函数
        audio_generator = inference(req)
        fake_audios = next(audio_generator)

        asr_result = batch_asr(
            zh_model if is_chinese(req.text) else en_model, [fake_audios], 44100
        )[0]
        wer = calculate_wer(req.text, asr_result["text"])

        if wer <= 0.1 and not asr_result["huge_gap"]:
            return fake_audios

        if wer < best_wer:
            best_wer = wer
            best_audio = fake_audios

        if attempt == max_attempts - 1:
            break

    return best_audio


async def inference_async(req: InvokeRequest):
    for chunk in inference(req):
        yield chunk


async def buffer_to_async_generator(buffer):
    yield buffer


@routes.http.post("/v1/invoke")
async def api_invoke_model(
    req: Annotated[InvokeRequest, Body(exclusive=True)],
):
    """
    Invoke model and generate audio
    """

    if args.max_text_length > 0 and len(req.text) > args.max_text_length:
        raise HTTPException(
            HTTPStatus.BAD_REQUEST,
            content=f"Text is too long, max length is {args.max_text_length}",
        )

    if req.streaming and req.format != "wav":
        raise HTTPException(
            HTTPStatus.BAD_REQUEST,
            content="Streaming only supports WAV format",
        )

    if req.streaming:
        return StreamResponse(
            iterable=inference_async(req),
            headers={
                "Content-Disposition": f"attachment; filename=audio.{req.format}",
            },
            content_type=get_content_type(req.format),
        )
    else:
        fake_audios = next(inference(req))
        buffer = io.BytesIO()
        sf.write(
            buffer,
            fake_audios,
            decoder_model.spec_transform.sample_rate,
            format=req.format,
        )

        return StreamResponse(
            iterable=buffer_to_async_generator(buffer.getvalue()),
            headers={
                "Content-Disposition": f"attachment; filename=audio.{req.format}",
            },
            content_type=get_content_type(req.format),
        )


@routes.http.post("/v1/health")
async def api_health():
    """
    Health check
    """

    return JSONResponse({"status": "ok"})


def parse_args():
    parser = ArgumentParser()
    parser.add_argument(
        "--llama-checkpoint-path",
        type=str,
        default="checkpoints/fish-speech-1.2-sft",
    )
    parser.add_argument(
        "--decoder-checkpoint-path",
        type=str,
        default="checkpoints/fish-speech-1.2-sft/firefly-gan-vq-fsq-4x1024-42hz-generator.pth",
    )
    parser.add_argument("--decoder-config-name", type=str, default="firefly_gan_vq")
    parser.add_argument("--device", type=str, default="cuda")
    parser.add_argument("--half", action="store_true")
    parser.add_argument("--compile", action="store_true")
    parser.add_argument("--max-text-length", type=int, default=0)
    parser.add_argument("--listen", type=str, default="127.0.0.1:8000")
    parser.add_argument("--workers", type=int, default=1)
    parser.add_argument("--use-auto-rerank", type=bool, default=True)

    return parser.parse_args()


# Define Kui app
openapi = OpenAPI(
    {
        "title": "Fish Speech API",
    },
).routes

app = Kui(
    routes=routes + openapi[1:],  # Remove the default route
    exception_handlers={
        HTTPException: http_execption_handler,
        Exception: other_exception_handler,
    },
    cors_config={},
)


if __name__ == "__main__":
    import threading

    import uvicorn

    args = parse_args()
    args.precision = torch.half if args.half else torch.bfloat16

    logger.info("Loading Llama model...")
    llama_queue = launch_thread_safe_queue(
        checkpoint_path=args.llama_checkpoint_path,
        device=args.device,
        precision=args.precision,
        compile=args.compile,
    )
    logger.info("Llama model loaded, loading VQ-GAN model...")

    decoder_model = load_decoder_model(
        config_name=args.decoder_config_name,
        checkpoint_path=args.decoder_checkpoint_path,
        device=args.device,
    )

    logger.info("VQ-GAN model loaded, warming up...")

    # Dry run to check if the model is loaded correctly and avoid the first-time latency
    list(
        inference(
            InvokeRequest(
                text="Hello world.",
                reference_text=None,
                reference_audio=None,
                max_new_tokens=0,
                top_p=0.7,
                repetition_penalty=1.2,
                temperature=0.7,
                emotion=None,
                format="wav",
                ref_base=None,
                ref_json=None,
            )
        )
    )

    logger.info(f"Warming up done, starting server at http://{args.listen}")
    host, port = args.listen.split(":")
    uvicorn.run(app, host=host, port=int(port), workers=args.workers, log_level="info")