Spaces:
Sleeping
Sleeping
File size: 4,197 Bytes
9429d2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import pickle
import os
import re
from g2p_en import G2p
from text import symbols
current_file_path = os.path.dirname(__file__)
CMU_DICT_PATH = os.path.join(current_file_path, "cmudict.rep")
CACHE_PATH = os.path.join(current_file_path, "cmudict_cache.pickle")
_g2p = G2p()
arpa = {
"AH0",
"S",
"AH1",
"EY2",
"AE2",
"EH0",
"OW2",
"UH0",
"NG",
"B",
"G",
"AY0",
"M",
"AA0",
"F",
"AO0",
"ER2",
"UH1",
"IY1",
"AH2",
"DH",
"IY0",
"EY1",
"IH0",
"K",
"N",
"W",
"IY2",
"T",
"AA1",
"ER1",
"EH2",
"OY0",
"UH2",
"UW1",
"Z",
"AW2",
"AW1",
"V",
"UW2",
"AA2",
"ER",
"AW0",
"UW0",
"R",
"OW1",
"EH1",
"ZH",
"AE0",
"IH2",
"IH",
"Y",
"JH",
"P",
"AY1",
"EY0",
"OY2",
"TH",
"HH",
"D",
"ER0",
"CH",
"AO1",
"AE1",
"AO2",
"OY1",
"AY2",
"IH1",
"OW0",
"L",
"SH",
}
def post_replace_ph(ph):
rep_map = {
":": ",",
";": ",",
",": ",",
"。": ".",
"!": "!",
"?": "?",
"\n": ".",
"·": ",",
"、": ",",
"...": "…",
"v": "V",
}
if ph in rep_map.keys():
ph = rep_map[ph]
if ph in symbols:
return ph
if ph not in symbols:
ph = "UNK"
return ph
def read_dict():
g2p_dict = {}
start_line = 49
with open(CMU_DICT_PATH) as f:
line = f.readline()
line_index = 1
while line:
if line_index >= start_line:
line = line.strip()
word_split = line.split(" ")
word = word_split[0]
syllable_split = word_split[1].split(" - ")
g2p_dict[word] = []
for syllable in syllable_split:
phone_split = syllable.split(" ")
g2p_dict[word].append(phone_split)
line_index = line_index + 1
line = f.readline()
return g2p_dict
def cache_dict(g2p_dict, file_path):
with open(file_path, "wb") as pickle_file:
pickle.dump(g2p_dict, pickle_file)
def get_dict():
if os.path.exists(CACHE_PATH):
with open(CACHE_PATH, "rb") as pickle_file:
g2p_dict = pickle.load(pickle_file)
else:
g2p_dict = read_dict()
cache_dict(g2p_dict, CACHE_PATH)
return g2p_dict
eng_dict = get_dict()
def refine_ph(phn):
tone = 0
if re.search(r"\d$", phn):
tone = int(phn[-1]) + 1
phn = phn[:-1]
return phn.lower(), tone
def refine_syllables(syllables):
tones = []
phonemes = []
for phn_list in syllables:
for i in range(len(phn_list)):
phn = phn_list[i]
phn, tone = refine_ph(phn)
phonemes.append(phn)
tones.append(tone)
return phonemes, tones
def text_normalize(text):
# todo: eng text normalize
return text
def g2p(text):
phones = []
tones = []
words = re.split(r"([,;.\-\?\!\s+])", text)
for w in words:
if w.upper() in eng_dict:
phns, tns = refine_syllables(eng_dict[w.upper()])
phones += phns
tones += tns
else:
phone_list = list(filter(lambda p: p != " ", _g2p(w)))
for ph in phone_list:
if ph in arpa:
ph, tn = refine_ph(ph)
phones.append(ph)
tones.append(tn)
else:
phones.append(ph)
tones.append(0)
# todo: implement word2ph
word2ph = [1 for i in phones]
phones = [post_replace_ph(i) for i in phones]
return phones, tones, word2ph
if __name__ == "__main__":
# print(get_dict())
# print(eng_word_to_phoneme("hello"))
print(g2p("In this paper, we propose 1 DSPGAN, a GAN-based universal vocoder."))
# all_phones = set()
# for k, syllables in eng_dict.items():
# for group in syllables:
# for ph in group:
# all_phones.add(ph)
# print(all_phones)
|